These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 24343201)
1. Smooth transition for CPG-based body shape control of a snake-like robot. Nor NM; Ma S Bioinspir Biomim; 2014 Mar; 9(1):016003. PubMed ID: 24343201 [TBL] [Abstract][Full Text] [Related]
2. A survey of snake-inspired robot designs. Hopkins JK; Spranklin BW; Gupta SK Bioinspir Biomim; 2009 Jun; 4(2):021001. PubMed ID: 19158415 [TBL] [Abstract][Full Text] [Related]
3. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot. Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848 [TBL] [Abstract][Full Text] [Related]
4. A decentralized control scheme for an effective coordination of phasic and tonic control in a snake-like robot. Sato T; Kano T; Ishiguro A Bioinspir Biomim; 2012 Mar; 7(1):016005. PubMed ID: 22183033 [TBL] [Abstract][Full Text] [Related]
5. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Onal CD; Rus D Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383 [TBL] [Abstract][Full Text] [Related]
6. Artificial annelid robot driven by soft actuators. Jung K; Koo JC; Nam JD; Lee YK; Choi HR Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328 [TBL] [Abstract][Full Text] [Related]
7. Phase coordination and phase-velocity relationship in metameric robot locomotion. Fang H; Li S; Wang KW; Xu J Bioinspir Biomim; 2015 Oct; 10(6):066006. PubMed ID: 26513696 [TBL] [Abstract][Full Text] [Related]
8. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion. Fukuoka Y; Fukino K; Habu Y; Mori Y Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690 [TBL] [Abstract][Full Text] [Related]
9. Towards realization of multi-terrestrial locomotion: decentralized control of a sheet-like robot based on the scaffold-exploitation mechanism. Kano T; Watanabe Y; Ishiguro A Bioinspir Biomim; 2012 Dec; 7(4):046012. PubMed ID: 23093049 [TBL] [Abstract][Full Text] [Related]
10. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Nurzaman SG; Yu X; Kim Y; Iida F Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228 [TBL] [Abstract][Full Text] [Related]
11. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising. Hu Y; Liang J; Wang T Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708 [TBL] [Abstract][Full Text] [Related]
12. A physical model of sensorimotor interactions during locomotion. Klein TJ; Lewis MA J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556 [TBL] [Abstract][Full Text] [Related]
13. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots. Liu C; Chen Q; Wang D IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715 [TBL] [Abstract][Full Text] [Related]
14. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems. Asnafi A; Mahzoon M Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716 [TBL] [Abstract][Full Text] [Related]
15. A micro creeping robot for colonoscopy based on the earthworm. Zuo J; Yan G; Gao Z J Med Eng Technol; 2005; 29(1):1-7. PubMed ID: 15764374 [TBL] [Abstract][Full Text] [Related]
16. Ophiuroid robot that self-organizes periodic and non-periodic arm movements. Kano T; Suzuki S; Watanabe W; Ishiguro A Bioinspir Biomim; 2012 Sep; 7(3):034001. PubMed ID: 22617431 [TBL] [Abstract][Full Text] [Related]
17. Slithering towards autonomy: a self-contained soft robotic snake platform with integrated curvature sensing. Luo M; Pan Y; Skorina EH; Tao W; Chen F; Ozel S; Onal CD Bioinspir Biomim; 2015 Sep; 10(5):055001. PubMed ID: 26335857 [TBL] [Abstract][Full Text] [Related]
18. Reinforcement learning for a biped robot based on a CPG-actor-critic method. Nakamura Y; Mori T; Sato MA; Ishii S Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559 [TBL] [Abstract][Full Text] [Related]
19. A biologically inspired meta-control navigation system for the Psikharpax rat robot. Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382 [TBL] [Abstract][Full Text] [Related]
20. Bio-inspired step-climbing in a hexapod robot. Chou YC; Yu WS; Huang KJ; Lin PC Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]