These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24343762)

  • 41. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A cell-penetrating peptide induces the self-reproduction of phospholipid vesicles: understanding the role of the bilayer rigidity.
    Banerjee P; Pal S; Kundu N; Mondal D; Sarkar N
    Chem Commun (Camb); 2018 Oct; 54(81):11451-11454. PubMed ID: 30252002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase transitions in supported lipid bilayers studied by AFM.
    Alessandrini A; Facci P
    Soft Matter; 2014 Oct; 10(37):7145-64. PubMed ID: 25090108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles.
    Kucerka N; Pencer J; Nieh MP; Katsaras J
    Eur Phys J E Soft Matter; 2007 Jul; 23(3):247-54. PubMed ID: 17619814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of phase separated vesicles by double layer cDICE.
    Dürre K; Bausch AR
    Soft Matter; 2019 Dec; 15(47):9676-9681. PubMed ID: 31663090
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relaxation of a simulated lipid bilayer vesicle compressed by an atomic force microscope.
    Barlow BM; Bertrand M; Joós B
    Phys Rev E; 2016 Nov; 94(5-1):052408. PubMed ID: 27967024
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lipid bilayers in the gel phase become saturated by triton X-100 at lower surfactant concentrations than those in the fluid phase.
    Ahyayauch H; Collado MI; Alonso A; Goñi FM
    Biophys J; 2012 Jun; 102(11):2510-6. PubMed ID: 22713566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulations of lipid transfer between a supported lipid bilayer and adsorbing vesicles.
    Dimitrievski K; Kasemo B
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):454-65. PubMed ID: 19815394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular diffusion and nano-mechanical properties of multi-phase supported lipid bilayers.
    Maekawa T; Chin H; Nyu T; Sut TN; Ferhan AR; Hayashi T; Cho NJ
    Phys Chem Chem Phys; 2019 Jul; 21(30):16686-16693. PubMed ID: 31317978
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers.
    Mou J; Yang J; Shao Z
    Biochemistry; 1994 Apr; 33(15):4439-43. PubMed ID: 8161497
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cholesterol Rich Domains Identified in Unilamellar Supported Biomimetic Membranes via Nano-Viscosity Measurements.
    Hasan IY; Mechler A
    Anal Chem; 2016 May; 88(10):5037-41. PubMed ID: 27137411
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1.
    Staneva G; Seigneuret M; Conjeaud H; Puff N; Angelova MI
    Langmuir; 2011 Dec; 27(24):15074-82. PubMed ID: 22026409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved membrane fluidity of ionic polysaccharide bead-supported phospholipid bilayer membrane systems.
    Haratake M; Takahira E; Yoshida S; Osei-Asante S; Fuchigami T; Nakayama M
    Colloids Surf B Biointerfaces; 2013 Jul; 107():90-6. PubMed ID: 23466547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-Controlled Lipid Interaction and Membrane Organization in Photolipid Bilayer Vesicles.
    Urban P; Pritzl SD; Konrad DB; Frank JA; Pernpeintner C; Roeske CR; Trauner D; Lohmüller T
    Langmuir; 2018 Nov; 34(44):13368-13374. PubMed ID: 30346771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exchange of Gramicidin between Lipid Bilayers: Implications for the Mechanism of Channel Formation.
    Lum K; Ingólfsson HI; Koeppe RE; Andersen OS
    Biophys J; 2017 Oct; 113(8):1757-1767. PubMed ID: 29045870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers.
    Piantanida L; Bolt HL; Rozatian N; Cobb SL; Voïtchovsky K
    Biophys J; 2017 Jul; 113(2):426-439. PubMed ID: 28746853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension.
    Kataoka-Hamai C; Kaizuka Y; Taguchi T
    Langmuir; 2016 Feb; 32(5):1250-8. PubMed ID: 26735125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.