BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24344125)

  • 1. Evidence for transceptor function of cellodextrin transporters in Neurospora crassa.
    Znameroski EA; Li X; Tsai JC; Galazka JM; Glass NL; Cate JH
    J Biol Chem; 2014 Jan; 289(5):2610-9. PubMed ID: 24344125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins.
    Znameroski EA; Coradetti ST; Roche CM; Tsai JC; Iavarone AT; Cate JH; Glass NL
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):6012-7. PubMed ID: 22474347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.
    Cai P; Wang B; Ji J; Jiang Y; Wan L; Tian C; Ma Y
    J Biol Chem; 2015 Jan; 290(2):788-96. PubMed ID: 25398875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of non-anchored cell wall protein NCW-1 promotes cellulase production by increasing cellobiose uptake in Neurospora crassa.
    Lin L; Chen Y; Li J; Wang S; Sun W; Tian C
    Biotechnol Lett; 2017 Apr; 39(4):545-551. PubMed ID: 28039555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a critical role for cellodextrin transporte 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa.
    Cai P; Gu R; Wang B; Li J; Wan L; Tian C; Ma Y
    PLoS One; 2014; 9(2):e89330. PubMed ID: 24586693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation.
    Kim H; Lee WH; Galazka JM; Cate JH; Jin YS
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1087-94. PubMed ID: 24190499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Proteome Profiling Reveals Cellobiose-Dependent Protein Processing and Export Pathways for the Lignocellulolytic Response in Neurospora crassa.
    Liu D; Liu Y; Zhang D; Chen X; Liu Q; Xiong B; Zhang L; Wei L; Wang Y; Fang H; Liesche J; Wei Y; Glass NL; Hao Z; Chen S
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cofermentation of cellobiose and galactose by an engineered Saccharomyces cerevisiae strain.
    Ha SJ; Wei Q; Kim SR; Galazka JM; Cate JH; Jin YS
    Appl Environ Microbiol; 2011 Aug; 77(16):5822-5. PubMed ID: 21705527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungus Penicillium oxalicum.
    Li J; Liu G; Chen M; Li Z; Qin Y; Qu Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10479-88. PubMed ID: 24132667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Cellodextrin Accumulation Resulted from Non-Conventional Secretion of Intracellular β-Glucosidase by Engineered
    Lee WH; Jin YS
    J Microbiol Biotechnol; 2021 Jul; 31(7):1035-1043. PubMed ID: 34226403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.
    Lian J; Li Y; HamediRad M; Zhao H
    Biotechnol Bioeng; 2014 Aug; 111(8):1521-31. PubMed ID: 24519319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica.
    Lane S; Zhang S; Wei N; Rao C; Jin YS
    Biotechnol Bioeng; 2015 May; 112(5):1012-22. PubMed ID: 25421388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Zha J; Li BZ; Shen MH; Hu ML; Song H; Yuan YJ
    PLoS One; 2013; 8(7):e68317. PubMed ID: 23844185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants.
    Wu W; Hildebrand A; Kasuga T; Xiong X; Fan Z
    Enzyme Microb Technol; 2013 Mar; 52(3):184-9. PubMed ID: 23410930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi.
    Coradetti ST; Craig JP; Xiong Y; Shock T; Tian C; Glass NL
    Proc Natl Acad Sci U S A; 2012 May; 109(19):7397-402. PubMed ID: 22532664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cellobiose fermentation by engineered Saccharomyces cerevisiae expressing a mutant cellodextrin facilitator and cellobiose phosphorylase.
    Kim H; Oh EJ; Lane ST; Lee WH; Cate JHD; Jin YS
    J Biotechnol; 2018 Jun; 275():53-59. PubMed ID: 29660472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new diet for yeast to improve biofuel production.
    Galazka JM; Cate JH
    Bioeng Bugs; 2011; 2(4):199-202. PubMed ID: 21637011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional factor Clr-5 is involved in cellulose degradation through regulation of amino acid metabolism in Neurospora crassa.
    Xue F; Zhao Z; Gu S; Chen M; Xu J; Luo X; Li J; Tian C
    BMC Biotechnol; 2023 Nov; 23(1):50. PubMed ID: 38031036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae.
    Bae YH; Kang KH; Jin YS; Seo JH
    J Biotechnol; 2014 Jan; 169():34-41. PubMed ID: 24184384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.