These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24344283)

  • 1. Constraints and potentials of future irrigation water availability on agricultural production under climate change.
    Elliott J; Deryng D; Müller C; Frieler K; Konzmann M; Gerten D; Glotter M; Flörke M; Wada Y; Best N; Eisner S; Fekete BM; Folberth C; Foster I; Gosling SN; Haddeland I; Khabarov N; Ludwig F; Masaki Y; Olin S; Rosenzweig C; Ruane AC; Satoh Y; Schmid E; Stacke T; Tang Q; Wisser D
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3239-44. PubMed ID: 24344283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.
    Falloon P; Betts R
    Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.
    Rosenzweig C; Elliott J; Deryng D; Ruane AC; Müller C; Arneth A; Boote KJ; Folberth C; Glotter M; Khabarov N; Neumann K; Piontek F; Pugh TA; Schmid E; Stehfest E; Yang H; Jones JW
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3268-73. PubMed ID: 24344314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The implication of irrigation in climate change impact assessment: a European-wide study.
    Zhao G; Webber H; Hoffmann H; Wolf J; Siebert S; Ewert F
    Glob Chang Biol; 2015 Nov; 21(11):4031-48. PubMed ID: 26227557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global water resources affected by human interventions and climate change.
    Haddeland I; Heinke J; Biemans H; Eisner S; Flörke M; Hanasaki N; Konzmann M; Ludwig F; Masaki Y; Schewe J; Stacke T; Tessler ZD; Wada Y; Wisser D
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3251-6. PubMed ID: 24344275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential for sustainable irrigation expansion in a 3 °C warmer climate.
    Rosa L; Chiarelli DD; Sangiorgio M; Beltran-Peña AA; Rulli MC; D'Odorico P; Fung I
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29526-29534. PubMed ID: 33168728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain.
    Tijjani SB; Giri S; Woznicki SA
    Sci Total Environ; 2022 Sep; 838(Pt 4):156538. PubMed ID: 35679922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework.
    Warszawski L; Frieler K; Huber V; Piontek F; Serdeczny O; Schewe J
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3228-32. PubMed ID: 24344316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models.
    Jägermeyr J; Müller C; Ruane AC; Elliott J; Balkovic J; Castillo O; Faye B; Foster I; Folberth C; Franke JA; Fuchs K; Guarin JR; Heinke J; Hoogenboom G; Iizumi T; Jain AK; Kelly D; Khabarov N; Lange S; Lin TS; Liu W; Mialyk O; Minoli S; Moyer EJ; Okada M; Phillips M; Porter C; Rabin SS; Scheer C; Schneider JM; Schyns JF; Skalsky R; Smerald A; Stella T; Stephens H; Webber H; Zabel F; Rosenzweig C
    Nat Food; 2021 Nov; 2(11):873-885. PubMed ID: 37117503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The greenhouse gas cost of agricultural intensification with groundwater irrigation in a Midwest U.S. row cropping system.
    McGill BM; Hamilton SK; Millar N; Robertson GP
    Glob Chang Biol; 2018 Dec; 24(12):5948-5960. PubMed ID: 30295393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projected water consumption in future global agriculture: scenarios and related impacts.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Sci Total Environ; 2011 Sep; 409(20):4206-16. PubMed ID: 21840571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change effects on agriculture: economic responses to biophysical shocks.
    Nelson GC; Valin H; Sands RD; Havlík P; Ahammad H; Deryng D; Elliott J; Fujimori S; Hasegawa T; Heyhoe E; Kyle P; Von Lampe M; Lotze-Campen H; Mason d'Croz D; van Meijl H; van der Mensbrugghe D; Müller C; Popp A; Robertson R; Robinson S; Schmid E; Schmitz C; Tabeau A; Willenbockel D
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3274-9. PubMed ID: 24344285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya.
    Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T
    PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating economic measures of adaptation effectiveness into climate change interventions: A case study of irrigation development in Mwea, Kenya.
    Narita D; Sato I; Ogawada D; Matsumura A
    PLoS One; 2020; 15(12):e0243779. PubMed ID: 33306704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate Change Impacts Assessment Using Crop Simulation Model Intercomparison Approach in Northern Indo-Gangetic Basin of Bangladesh.
    Chawdhery MRA; Al-Mueed M; Wazed MA; Emran SA; Chowdhury MAH; Hussain SG
    Int J Environ Res Public Health; 2022 Nov; 19(23):. PubMed ID: 36497906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources.
    Cochand F; Brunner P; Hunkeler D; Rössler O; Holzkämper A
    Sci Total Environ; 2021 Dec; 798():148759. PubMed ID: 34332390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.