BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 24344625)

  • 1. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
    Cha C; Oh J; Kim K; Qiu Y; Joh M; Shin SR; Wang X; Camci-Unal G; Wan KT; Liao R; Khademhosseini A
    Biomacromolecules; 2014 Jan; 15(1):283-90. PubMed ID: 24344625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration.
    An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H
    Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects.
    Compaan AM; Song K; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration.
    Chen X; Bai S; Li B; Liu H; Wu G; Liu S; Zhao Y
    Int J Nanomedicine; 2016; 11():4707-4718. PubMed ID: 27695327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Fabrication of Gelatin Acrylamide Microgels through Visible Light Photopolymerization for Cell Encapsulation.
    Tang T; Liu C; Min Z; Cai W; Zhang X; Li W; Zhang A
    ACS Appl Bio Mater; 2023 Jun; 6(6):2496-2504. PubMed ID: 37289861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications.
    Pal V; Singh YP; Gupta D; Alioglu MA; Nagamine M; Kim MH; Ozbolat IT
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36927673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell Microencapsulation within Gelatin-PEG Microgels Using a Simple Pipet Tip-Based Device.
    Nguyen TPT; Li F; Hung B; Truong VX; Thissen H; Forsythe JS; Frith JE
    ACS Biomater Sci Eng; 2023 Nov; 9(11):6024-6033. PubMed ID: 37788301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering.
    Zoratto N; Di Lisa D; de Rutte J; Sakib MN; Alves E Silva AR; Tamayol A; Di Carlo D; Khademhosseini A; Sheikhi A
    Bioeng Transl Med; 2020 Sep; 5(3):e10180. PubMed ID: 33005742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous Two-Phase Emulsion Bioresin for Facile One-Step 3D Microgel-Based Bioprinting.
    Wang Q; Karadas Ö; Backman O; Wang L; Näreoja T; Rosenholm JM; Xu C; Wang X
    Adv Healthc Mater; 2023 Jul; 12(19):e2203243. PubMed ID: 36929700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast-Curing Injectable Microporous Hydrogel for
    Edwards SD; Hou S; Brown JM; Boudreau RD; Lee Y; Kim YJ; Jeong KJ
    ACS Appl Bio Mater; 2022 Jun; 5(6):2786-2794. PubMed ID: 35576622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Gelatin Methacryloyl (GelMA) Hydrogels in Microfluidic Technique-Assisted Tissue Engineering.
    Liu T; Weng W; Zhang Y; Sun X; Yang H
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin Methacryloyl Granular Hydrogel Scaffolds: High-throughput Microgel Fabrication, Lyophilization, Chemical Assembly, and 3D Bioprinting.
    Ataie Z; Jaberi A; Kheirabadi S; Risbud A; Sheikhi A
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36571405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
    Muir VG; Qazi TH; Shan J; Groll J; Burdick JA
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4269-4281. PubMed ID: 33591726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden microengineered gelatin methacrylate hydrogels.
    Nichol JW; Koshy ST; Bae H; Hwang CM; Yamanlar S; Khademhosseini A
    Biomaterials; 2010 Jul; 31(21):5536-44. PubMed ID: 20417964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Microgel Scaffolds with Tunable Void Fraction to Promote Cell Infiltration.
    Seymour AJ; Shin S; Heilshorn SC
    Adv Healthc Mater; 2021 Sep; 10(18):e2100644. PubMed ID: 34342179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable Macroporous Hydrogel Formed by Enzymatic Cross-Linking of Gelatin Microgels.
    Hou S; Lake R; Park S; Edwards S; Jones C; Jeong KJ
    ACS Appl Bio Mater; 2018 Nov; 1(5):1430-1439. PubMed ID: 31701093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-functionalized graphene quantum dot incorporated GelMA microgels as fluorescent 3D-tissue Constructs.
    Taravatfard AZ; Ceballos-Gonzalez C; Siddique AB; Bolivar-Monsalve J; Madadelahi M; Trujillo-de Santiago G; Moisés Alvarez M; Pramanick AK; Martinez Guerra E; Kulinsky L; Madou MJ; Martinez SO; Ray M
    Nanoscale; 2023 Oct; 15(40):16277-16286. PubMed ID: 37650749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User-friendly microfluidic manufacturing of hydrogel microspheres with sharp needle.
    Shao L; Pan B; Hou R; Jin Y; Yao Y
    Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35193129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.