These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 24344633)
1. A new rechargeable sodium battery utilizing reversible topotactic oxygen extraction/insertion of CaFeO(z) (2.5 ≤ z ≤ 3) in an organic electrolyte. Hibino M; Harimoto R; Ogasawara Y; Kido R; Sugahara A; Kudo T; Tochigi E; Shibata N; Ikuhara Y; Mizuno N J Am Chem Soc; 2014 Jan; 136(1):488-94. PubMed ID: 24344633 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Evolution of strategies for modern rechargeable batteries. Goodenough JB Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097 [TBL] [Abstract][Full Text] [Related]
4. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
5. VOCl as a Cathode for Rechargeable Chloride Ion Batteries. Gao P; Reddy MA; Mu X; Diemant T; Zhang L; Zhao-Karger Z; Chakravadhanula VS; Clemens O; Behm RJ; Fichtner M Angew Chem Int Ed Engl; 2016 Mar; 55(13):4285-90. PubMed ID: 26924132 [TBL] [Abstract][Full Text] [Related]
6. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Kar M; Simons TJ; Forsyth M; MacFarlane DR Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926 [TBL] [Abstract][Full Text] [Related]
7. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
15. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Meng YS; Arroyo-de Dompablo ME Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876 [TBL] [Abstract][Full Text] [Related]
17. Prototype systems for rechargeable magnesium batteries. Aurbach D; Lu Z; Schechter A; Gofer Y; Gizbar H; Turgeman R; Cohen Y; Moshkovich M; Levi E Nature; 2000 Oct; 407(6805):724-7. PubMed ID: 11048714 [TBL] [Abstract][Full Text] [Related]
18. Understanding side reactions in K-O2 batteries for improved cycle life. Ren X; Lau KC; Yu M; Bi X; Kreidler E; Curtiss LA; Wu Y ACS Appl Mater Interfaces; 2014 Nov; 6(21):19299-307. PubMed ID: 25295518 [TBL] [Abstract][Full Text] [Related]
19. Using waste Li ion batteries as cathodes in rechargeable Li-liquid batteries. Chun J; Chung M; Lee J; Kim Y Phys Chem Chem Phys; 2013 May; 15(19):7036-40. PubMed ID: 23559258 [TBL] [Abstract][Full Text] [Related]
20. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Aurbach D; Weissman I; Gofer Y; Levi E Chem Rec; 2003; 3(1):61-73. PubMed ID: 12552532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]