These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24344695)

  • 1. Multi-strategy coevolving aging particle optimization.
    Iacca G; Caraffini F; Neri F
    Int J Neural Syst; 2014 Feb; 24(1):1450008. PubMed ID: 24344695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of global search algorithms for continuous black box optimization.
    Pošík P; Huyer W; Pál L
    Evol Comput; 2012; 20(4):509-41. PubMed ID: 22708992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Cloud Particles Evolution Algorithm Based on Data-Driven Mechanism for Applications of ANN.
    Li W
    Comput Intell Neurosci; 2017; 2017():8469103. PubMed ID: 28761438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.
    Elhossini A; Areibi S; Dony R
    Evol Comput; 2010; 18(1):127-56. PubMed ID: 20064026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust GRBF static neurocontroller with switch logic for control of robot manipulators.
    Mulero-Martínez JI
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1053-64. PubMed ID: 24807132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A memetic optimization strategy based on dimension reduction in decision space.
    Wang H; Jiao L; Shang R; He S; Liu F
    Evol Comput; 2015; 23(1):69-100. PubMed ID: 24520808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks.
    Cruz-Ramírez M; Hervás-Martínez C; Fernández JC; Briceño J; de la Mata M
    Artif Intell Med; 2013 May; 58(1):37-49. PubMed ID: 23489761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.
    Kiranyaz S; Ince T; Yildirim A; Gabbouj M
    Neural Netw; 2009 Dec; 22(10):1448-62. PubMed ID: 19556105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-learning particle swarm optimizer for global optimization problems.
    Li C; Yang S; Nguyen TT
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):627-46. PubMed ID: 22067435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intelligent multi-restart memetic algorithm for box constrained global optimisation.
    Sun J; Garibaldi JM; Krasnogor N; Zhang Q
    Evol Comput; 2013; 21(1):107-47. PubMed ID: 22335546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical genetic algorithm for near optimal feedforward neural network design.
    Yen G; Lu H
    Int J Neural Syst; 2002 Feb; 12(1):31-43. PubMed ID: 11852443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cheetah optimizer: a nature-inspired metaheuristic algorithm for large-scale optimization problems.
    Akbari MA; Zare M; Azizipanah-Abarghooee R; Mirjalili S; Deriche M
    Sci Rep; 2022 Jun; 12(1):10953. PubMed ID: 35768456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speeding up backpropagation using multiobjective evolutionary algorithms.
    Abbass HA
    Neural Comput; 2003 Nov; 15(11):2705-26. PubMed ID: 14577859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self adaptive hybrid enhanced artificial bee colony algorithm for continuous optimization problems.
    Shan H; Yasuda T; Ohkura K
    Biosystems; 2015 Jun; 132-133():43-53. PubMed ID: 25982071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the BBOB results by means of benchmarking concepts.
    Mersmann O; Preuss M; Trautmann H; Bischl B; Weihs C
    Evol Comput; 2015; 23(1):161-85. PubMed ID: 24967695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.
    Patra TK; Meenakshisundaram V; Hung JH; Simmons DS
    ACS Comb Sci; 2017 Feb; 19(2):96-107. PubMed ID: 27997791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics.
    Wai RJ; Muthusamy R
    IEEE Trans Neural Netw Learn Syst; 2013 Feb; 24(2):274-87. PubMed ID: 24808281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From sensors to spikes: evolving receptive fields to enhance sensorimotor information in a robot-arm.
    Luque NR; Garrido JA; Ralli J; Laredo JJ; Ros E
    Int J Neural Syst; 2012 Aug; 22(4):1250013. PubMed ID: 22830963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.