These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24344971)

  • 1. Role of copper oxides in contact killing of bacteria.
    Hans M; Erbe A; Mathews S; Chen Y; Solioz M; Mücklich F
    Langmuir; 2013 Dec; 29(52):16160-6. PubMed ID: 24344971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution Microscopical Studies of Contact Killing Mechanisms on Copper-Based Surfaces.
    Chang T; Babu RP; Zhao W; Johnson CM; Hedström P; Odnevall I; Leygraf C
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49402-49413. PubMed ID: 34618446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical properties of copper important for its antibacterial activity and development of a unified model.
    Hans M; Mathews S; Mücklich F; Solioz M
    Biointerphases; 2015 Mar; 11(1):018902. PubMed ID: 26577181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of copper oxide nanoparticles for antimicrobial applications.
    Ren G; Hu D; Cheng EW; Vargas-Reus MA; Reip P; Allaker RP
    Int J Antimicrob Agents; 2009 Jun; 33(6):587-90. PubMed ID: 19195845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial mechanism of cuprous oxide (Cu
    Behzadinasab S; Williams MD; Falkinham Iii JO; Ducker WA
    J Colloid Interface Sci; 2023 Dec; 652(Pt B):1867-1877. PubMed ID: 37688933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles.
    Nwanya AC; Razanamahandry LC; Bashir AKH; Ikpo CO; Nwanya SC; Botha S; Ntwampe SKO; Ezema FI; Iwuoha EI; Maaza M
    J Hazard Mater; 2019 Aug; 375():281-289. PubMed ID: 31078988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.
    Yousuf B; Ahire JJ; Dicks LM
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5569-80. PubMed ID: 26860943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early-stage corrosion, ion release, and the antibacterial effect of copper and cuprous oxide in physiological buffers: Phosphate-buffered saline vs Na-4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
    Luo J; Hein C; Pierson JF; Mücklich F
    Biointerphases; 2019 Dec; 14(6):061004. PubMed ID: 31830792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity.
    Hassan MS; Amna T; Yang OB; El-Newehy MH; Al-Deyab SS; Khil MS
    Colloids Surf B Biointerfaces; 2012 Sep; 97():201-6. PubMed ID: 22609604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters.
    Luo J; Hein C; Mücklich F; Solioz M
    Biointerphases; 2017 Apr; 12(2):020301. PubMed ID: 28407716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidation of copper catalysts during ethylene epoxidation.
    Greiner MT; Jones TE; Johnson BE; Rocha TC; Wang ZJ; Armbrüster M; Willinger M; Knop-Gericke A; Schlögl R
    Phys Chem Chem Phys; 2015 Oct; 17(38):25073-89. PubMed ID: 26345450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria.
    Zhang X; Yang C; Xi T; Zhao J; Yang K
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2303-2315. PubMed ID: 33395246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite.
    Malka E; Perelshtein I; Lipovsky A; Shalom Y; Naparstek L; Perkas N; Patick T; Lubart R; Nitzan Y; Banin E; Gedanken A
    Small; 2013 Dec; 9(23):4069-76. PubMed ID: 23813908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes.
    Pandiyarajan T; Udayabhaskar R; Vignesh S; James RA; Karthikeyan B
    Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2020-4. PubMed ID: 23498227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations.
    Sedighi A; Montazer M; Samadi N
    Carbohydr Polym; 2014 Sep; 110():489-98. PubMed ID: 24906783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes.
    Hang R; Gao A; Huang X; Wang X; Zhang X; Qin L; Tang B
    J Biomed Mater Res A; 2014 Jun; 102(6):1850-8. PubMed ID: 23907848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outstanding Antibiofilm Features of Quanta-CuO Film on Glass Surface.
    Tripathy N; Ahmad R; Bang SH; Khang G; Min J; Hahn YB
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15128-37. PubMed ID: 27248981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes.
    Huang CC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    Chemistry; 2006 May; 12(14):3805-10. PubMed ID: 16528773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding.
    Dong Y; Li X; Tian L; Bell T; Sammons RL; Dong H
    Acta Biomater; 2011 Jan; 7(1):447-57. PubMed ID: 20727993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.