These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
573 related articles for article (PubMed ID: 24345084)
21. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Hu C; Xiao Y; Zhao Y; Chen N; Zhang Z; Cao M; Qu L Nanoscale; 2013 Apr; 5(7):2726-33. PubMed ID: 23426378 [TBL] [Abstract][Full Text] [Related]
22. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. Xiao Y; Wang X; Wang W; Zhao D; Cao M ACS Appl Mater Interfaces; 2014 Feb; 6(3):2051-8. PubMed ID: 24410006 [TBL] [Abstract][Full Text] [Related]
23. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. Hou J; Cao C; Idrees F; Ma X ACS Nano; 2015 Mar; 9(3):2556-64. PubMed ID: 25703427 [TBL] [Abstract][Full Text] [Related]
24. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. Huang S; Cheong LZ; Wang D; Shen C ACS Appl Mater Interfaces; 2017 Jul; 9(28):23672-23678. PubMed ID: 28661118 [TBL] [Abstract][Full Text] [Related]
25. Ultrafine Co Dong C; Guo L; He Y; Shang L; Qian Y; Xu L Nanoscale; 2018 Feb; 10(6):2804-2811. PubMed ID: 29359772 [TBL] [Abstract][Full Text] [Related]
26. Compositing amorphous TiO2 with N-doped carbon as high-rate anode materials for lithium-ion batteries. Xiao Y; Hu C; Cao M Chem Asian J; 2014 Jan; 9(1):351-6. PubMed ID: 24347075 [TBL] [Abstract][Full Text] [Related]
27. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Zheng F; Yang Y; Chen Q Nat Commun; 2014 Nov; 5():5261. PubMed ID: 25374050 [TBL] [Abstract][Full Text] [Related]
28. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Xu G; Ding B; Nie P; Shen L; Wang J; Zhang X Chemistry; 2013 Sep; 19(37):12306-12. PubMed ID: 23881725 [TBL] [Abstract][Full Text] [Related]
29. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability. Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587 [TBL] [Abstract][Full Text] [Related]
30. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
31. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. Chen L; Wang Z; He C; Zhao N; Shi C; Liu E; Li J ACS Appl Mater Interfaces; 2013 Oct; 5(19):9537-45. PubMed ID: 24016841 [TBL] [Abstract][Full Text] [Related]
32. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries. Yuan G; Xiang J; Jin H; Wu L; Jin Y; Zhao Y Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29320404 [TBL] [Abstract][Full Text] [Related]
33. A Fe/Fe3O4/N-carbon composite with hierarchical porous structure and in situ formed N-doped graphene-like layers for high-performance lithium ion batteries. Li Y; Meng Q; Zhu SM; Sun ZH; Yang H; Chen ZX; Zhu CL; Guo ZP; Zhang D Dalton Trans; 2015 Mar; 44(10):4594-600. PubMed ID: 25655996 [TBL] [Abstract][Full Text] [Related]
34. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957 [TBL] [Abstract][Full Text] [Related]
35. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery. Ming H; Ming J; Oh SM; Tian S; Zhou Q; Huang H; Sun YK; Zheng J ACS Appl Mater Interfaces; 2014 Sep; 6(17):15499-509. PubMed ID: 25141154 [TBL] [Abstract][Full Text] [Related]
36. Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates. Wang W; Yu C; Lin Z; Hou J; Zhu H; Jiao S Nanoscale; 2013 Jan; 5(2):594-9. PubMed ID: 23203161 [TBL] [Abstract][Full Text] [Related]
37. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
38. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries. Lee YW; Kim DM; Kim SJ; Kim MC; Choe HS; Lee KH; Sohn JI; Cha SN; Kim JM; Park KW ACS Appl Mater Interfaces; 2016 Mar; 8(11):7022-9. PubMed ID: 26895137 [TBL] [Abstract][Full Text] [Related]
39. Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. Ma X; Ning G; Qi C; Xu C; Gao J ACS Appl Mater Interfaces; 2014 Aug; 6(16):14415-22. PubMed ID: 25105538 [TBL] [Abstract][Full Text] [Related]
40. Ultrathin sandwich-like MoS2@N-doped carbon nanosheets for anodes of lithium ion batteries. Jeong JM; Lee KG; Chang SJ; Kim JW; Han YK; Lee SJ; Choi BG Nanoscale; 2015 Jan; 7(1):324-9. PubMed ID: 25407012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]