These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 24345085)

  • 1. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.
    Rodríguez FJ; Torres A; Peñaloza Á; Sepúlveda H; Galotto MJ; Guarda A; Bruna J
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2014; 31(3):342-53. PubMed ID: 24345085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel polymer based on MtCu2+/cellulose acetate with antimicrobial activity.
    Bruna JE; Galotto MJ; Guarda A; Rodríguez F
    Carbohydr Polym; 2014 Feb; 102():317-23. PubMed ID: 24507287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use.
    Dairi N; Ferfera-Harrar H; Ramos M; Garrigós MC
    Int J Biol Macromol; 2019 Jan; 121():508-523. PubMed ID: 30321636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Green" nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer.
    Park HM; Misra M; Drzal LT; Mohanty AK
    Biomacromolecules; 2004; 5(6):2281-8. PubMed ID: 15530043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial nanostructured starch based films for packaging.
    Abreu AS; Oliveira M; de Sá A; Rodrigues RM; Cerqueira MA; Vicente AA; Machado AV
    Carbohydr Polym; 2015 Sep; 129():127-34. PubMed ID: 26050897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of poly(ε-caprolactone)-based nanocomposites containing hydroxytyrosol for active food packaging.
    Beltrán A; Valente AJ; Jiménez A; Garrigós MC
    J Agric Food Chem; 2014 Mar; 62(10):2244-52. PubMed ID: 24552402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on sodium benzoate release from poly(butylene adipate-co-terephthalate)/organoclay/sodium benzoate based nanocomposite film and their antimicrobial activity.
    Mondal D; Bhowmick B; Maity D; Mollick MM; Rana D; Rangarajan V; Sen R; Chattopadhyay D
    J Food Sci; 2015 Mar; 80(3):E602-9. PubMed ID: 25644560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of potassium sorbate on antimicrobial and physical properties of starch-clay nanocomposite films.
    Barzegar H; Azizi MH; Barzegar M; Hamidi-Esfahani Z
    Carbohydr Polym; 2014 Sep; 110():26-31. PubMed ID: 24906724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.
    Ghanbarzadeh B; Oleyaei SA; Almasi H
    Crit Rev Food Sci Nutr; 2015; 55(12):1699-723. PubMed ID: 24798951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion morphology and correlation to moduli using buckling metrology in clay-biopolymer nanocomposite thin films.
    Yuan H; Singh G; Raghavan D; Al-Enizi AM; Elzatahry A; Karim A
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13378-88. PubMed ID: 25062299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and characterization of agar/clay nanocomposite films: the effect of clay type.
    Rhim JW; Lee SB; Hong SI
    J Food Sci; 2011 Apr; 76(3):N40-8. PubMed ID: 21535851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of polypropylene/clay nanocomposites for food packaging.
    Choi RN; Cheigh CI; Lee SY; Chung MS
    J Food Sci; 2011 Oct; 76(8):N62-7. PubMed ID: 22417600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite.
    Nouri A; Yaraki MT; Ghorbanpour M; Agarwal S; Gupta VK
    Int J Biol Macromol; 2018 Apr; 109():1219-1231. PubMed ID: 29169945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals.
    da Silva JB; Pereira FV; Druzian JI
    J Food Sci; 2012 Jun; 77(6):N14-9. PubMed ID: 22582979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of montmorillonite on properties of methyl cellulose/carvacrol based active antimicrobial nanocomposites.
    Tunç S; Duman O; Polat TG
    Carbohydr Polym; 2016 Oct; 150():259-68. PubMed ID: 27312637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millable polyurethane/organoclay nanocomposites: preparation, characterization, and properties.
    Siliani M; López-Manchado MA; Valentín JL; Arroyo M; Marcos A; Khayet M; Villaluenga JP
    J Nanosci Nanotechnol; 2007 Feb; 7(2):634-40. PubMed ID: 17450806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple method to improve the clarity and rheological properties of polymer/clay nanocomposites by using fractionated clay particles.
    Cipriano BH; Kashiwagi T; Zhang X; Raghavan SR
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):130-5. PubMed ID: 20355764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of various plasticizers and nanoclays on the mechanical properties of red algae film.
    Jang SA; Shin YJ; Seo YB; Song KB
    J Food Sci; 2011 Apr; 76(3):N30-4. PubMed ID: 21535849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films.
    Khan A; Khan RA; Salmieri S; Le Tien C; Riedl B; Bouchard J; Chauve G; Tan V; Kamal MR; Lacroix M
    Carbohydr Polym; 2012 Nov; 90(4):1601-8. PubMed ID: 22944422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.