These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 24345171)

  • 1. The dynamics of proactive and reactive cognitive control processes in the human brain.
    Appelbaum LG; Boehler CN; Davis LA; Won RJ; Woldorff MG
    J Cogn Neurosci; 2014 May; 26(5):1021-38. PubMed ID: 24345171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural cascade of conflict processing: Not just time-on-task.
    McKay CC; van den Berg B; Woldorff MG
    Neuropsychologia; 2017 Feb; 96():184-191. PubMed ID: 28017818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-modal stimulus conflict: the behavioral effects of stimulus input timing in a visual-auditory Stroop task.
    Donohue SE; Appelbaum LG; Park CJ; Roberts KC; Woldorff MG
    PLoS One; 2013; 8(4):e62802. PubMed ID: 23638149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pleasant mood intensifies brain processing of cognitive control: ERP correlates.
    Yuan J; Xu S; Yang J; Liu Q; Chen A; Zhu L; Chen J; Li H
    Biol Psychol; 2011 Apr; 87(1):17-24. PubMed ID: 21315134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-frequency analysis of the event-related potentials associated with the Stroop test.
    Ergen M; Saban S; Kirmizi-Alsan E; Uslu A; Keskin-Ergen Y; Demiralp T
    Int J Psychophysiol; 2014 Dec; 94(3):463-72. PubMed ID: 25135670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological explorations of the bilingual advantage: evidence from a Stroop task.
    Coderre EL; van Heuven WJ
    PLoS One; 2014; 9(7):e103424. PubMed ID: 25068723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The developmental pattern of stimulus and response interference in a color-object Stroop task: an ERP study.
    Jongen EM; Jonkman LM
    BMC Neurosci; 2008 Sep; 9():82. PubMed ID: 18775060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural time course of conflict adaptation effects on the Stroop task.
    Larson MJ; Kaufman DA; Perlstein WM
    Neuropsychologia; 2009 Feb; 47(3):663-70. PubMed ID: 19071142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the left head of caudate in suppressing irrelevant words.
    Ali N; Green DW; Kherif F; Devlin JT; Price CJ
    J Cogn Neurosci; 2010 Oct; 22(10):2369-86. PubMed ID: 19803688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing.
    Krebs RM; Boehler CN; Appelbaum LG; Woldorff MG
    PLoS One; 2013; 8(1):e53894. PubMed ID: 23326530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broca's region and Visual Word Form Area activation differ during a predictive Stroop task.
    Wallentin M; Gravholt CH; Skakkebæk A
    Cortex; 2015 Dec; 73():257-70. PubMed ID: 26478962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rapid distraction of attentional resources toward the source of incongruent stimulus input during multisensory conflict.
    Donohue SE; Todisco AE; Woldorff MG
    J Cogn Neurosci; 2013 Apr; 25(4):623-35. PubMed ID: 23249355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulus and response conflict in the color-word Stroop task: a combined electro-myography and event-related potential study.
    Szucs D; Soltész F
    Brain Res; 2010 Apr; 1325():63-76. PubMed ID: 20153298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ad-hoc and context-dependent adjustments of selective attention in conflict control: an ERP study with visual probes.
    Nigbur R; Schneider J; Sommer W; Dimigen O; Stürmer B
    Neuroimage; 2015 Feb; 107():76-84. PubMed ID: 25482266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stroop matching task: role of feature selection and temporal modulation.
    David IA; Volchan E; Vila J; Keil A; de Oliveira L; Faria-Júnior AJ; Perakakis P; Dias EC; Mocaiber I; Pereira MG; Machado-Pinheiro W
    Exp Brain Res; 2011 Feb; 208(4):595-605. PubMed ID: 21161193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Priming and backward influences in the human brain: processing interactions during the stroop interference effect.
    Appelbaum LG; Meyerhoff KL; Woldorff MG
    Cereb Cortex; 2009 Nov; 19(11):2508-21. PubMed ID: 19321654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological measures of conflict detection and resolution in the Stroop task.
    Coderre E; Conklin K; van Heuven WJ
    Brain Res; 2011 Sep; 1413():51-9. PubMed ID: 21840503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.