BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24345525)

  • 1. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():233-7. PubMed ID: 24345525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the (7)Li(p,n)(7)Be reaction near threshold.
    Herrera MS; Moreno GA; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():243-6. PubMed ID: 24326311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A TPD and AR based comparison of accelerator neutron irradiation fields between (7)Li and W targets for BNCT.
    Tanaka K; Endo S; Yonai S; Baba M; Hoshi M
    Appl Radiat Isot; 2014 Jun; 88():229-32. PubMed ID: 24359788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
    Kobayashi T; Miura K; Hayashizaki N; Aritomi M
    Appl Radiat Isot; 2014 Jun; 88():198-202. PubMed ID: 24412425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beam shaping assembly design of
    Zaidi L; Belgaid M; Taskaev S; Khelifi R
    Appl Radiat Isot; 2018 Sep; 139():316-324. PubMed ID: 29890472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerator-based BNCT.
    Kreiner AJ; Baldo M; Bergueiro JR; Cartelli D; Castell W; Thatar Vento V; Gomez Asoia J; Mercuri D; Padulo J; Suarez Sandin JC; Erhardt J; Kesque JM; Valda AA; Debray ME; Somacal HR; Igarzabal M; Minsky DM; Herrera MS; Capoulat ME; Gonzalez SJ; del Grosso MF; Gagetti L; Suarez Anzorena M; Gun M; Carranza O
    Appl Radiat Isot; 2014 Jun; 88():185-9. PubMed ID: 24365468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of target system for intense neutron source of p-Li reaction.
    Kamada S; Takada M; Suda M; Hamano T; Imaseki H; Hoshi M; Fujii R; Nakamura M; Sato H; Higashimata A; Arai S
    Appl Radiat Isot; 2014 Jun; 88():195-7. PubMed ID: 24786900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a tandem-electrostatic-quadrupole accelerator facility for BNCT.
    Kreiner AJ; Thatar Vento V; Levinas P; Bergueiro J; Di Paolo H; Burlon AA; Kesque JM; Valda AA; Debray ME; Somacal HR; Minsky DM; Estrada L; Hazarabedian A; Johann F; Suarez Sandin JC; Castell W; Davidson J; Davidson M; Giboudot Y; Repetto M; Obligado M; Nery JP; Huck H; Igarzabal M; Fernandez Salares A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S266-9. PubMed ID: 19376714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. (9)Be(d,n)(10)B-based neutron sources for BNCT.
    Capoulat ME; Herrera MS; Minsky DM; González SJ; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():190-4. PubMed ID: 24332880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a Bonner sphere spectrometer for the determination of the angular neutron energy spectrum of an accelerator-based BNCT facility.
    Mirzajani N; Ciolini R; Di Fulvio A; Esposito J; d'Errico F
    Appl Radiat Isot; 2014 Jun; 88():216-20. PubMed ID: 24461556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.
    Lee PY; Liu YH; Jiang SH
    Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Project for the development of the linac based NCT facility in University of Tsukuba.
    Kumada H; Matsumura A; Sakurai H; Sakae T; Yoshioka M; Kobayashi H; Matsumoto H; Kiyanagi Y; Shibata T; Nakashima H
    Appl Radiat Isot; 2014 Jun; 88():211-5. PubMed ID: 24637084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.
    Inoue R; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized therapeutic neutron beam for accelerator-based BNCT by analyzing the neutron angular distribution from (7)Li(p,n)(7)Be reaction.
    Kim KO; Kim JK; Kim SY
    Appl Radiat Isot; 2009; 67(7-8):1173-9. PubMed ID: 19303311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.