These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 24345666)

  • 1. Comparison of methods used to predict energy requirements in a whole room calorimeter.
    Tan SY; Batterham M; Tapsell L
    Obes Res Clin Pract; 2010; 4(3):e163-246. PubMed ID: 24345666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of methods for achieving 24-hour energy balance in a whole-room indirect calorimeter.
    Grunwald GK; Melanson EL; Forster JE; Seagle HM; Sharp TA; Hill JO
    Obes Res; 2003 Jun; 11(6):752-9. PubMed ID: 12805396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity of the BodyGem calorimeter and prediction equations for the assessment of resting energy expenditure in overweight and obese Saudi males.
    Almajwal AM; Williams PG; Batterham MJ
    Saudi Med J; 2011 Jul; 32(7):718-24. PubMed ID: 21748210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hand-held indirect calorimeter offers advantages compared with prediction equations, in a group of overweight women, to determine resting energy expenditures and estimated total energy expenditures during research screening.
    Spears KE; Kim H; Behall KM; Conway JM
    J Am Diet Assoc; 2009 May; 109(5):836-45. PubMed ID: 19394470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracmor system for measuring walking energy expenditure.
    Levine J; Melanson EL; Westerterp KR; Hill JO
    Eur J Clin Nutr; 2003 Sep; 57(9):1176-80. PubMed ID: 12947439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and preference of measuring resting energy expenditure using a handheld calorimeter in healthy adults.
    Madden AM; Parker LJ; Amirabdollahian F
    J Hum Nutr Diet; 2013 Dec; 26(6):587-95. PubMed ID: 23650967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism and requirements in different ethnic groups.
    de Boer JO; van Es AJ; Voorrips LE; Blokstra F; Vogt JE
    Eur J Clin Nutr; 1988 Dec; 42(12):983-97. PubMed ID: 3234330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New equations for calculating the components of energy expenditure in infants.
    Duro D; Rising R; Cole C; Valois S; Cedillo M; Lifshitz F
    J Pediatr; 2002 May; 140(5):534-9. PubMed ID: 12032518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caltrac versus calorimeter determination of 24-h energy expenditure in female children and adolescents.
    Bray MS; Wong WW; Morrow JR; Butte NF; Pivarnik JM
    Med Sci Sports Exerc; 1994 Dec; 26(12):1524-30. PubMed ID: 7869888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure.
    Whybrow S; Ritz P; Horgan GW; Stubbs RJ
    Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-living energy expenditure assessed by two different methods in rural Gambian men.
    Heini AF; Minghelli G; Diaz E; Prentice AM; Schutz Y
    Eur J Clin Nutr; 1996 May; 50(5):284-9. PubMed ID: 8735308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP; Neumann M; Béziat A; Chen KY
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the ActiGraph two-regression model for predicting energy expenditure.
    Rothney MP; Brychta RJ; Meade NN; Chen KY; Buchowski MS
    Med Sci Sports Exerc; 2010 Sep; 42(9):1785-92. PubMed ID: 20142778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplification of the method of assessing daily and nightly energy expenditure in children, using heart rate monitoring calibrated against open circuit indirect calorimetry.
    Beghin L; Budniok T; Vaksman G; Boussard-Delbecque L; Michaud L; Turck D; Gottrand F
    Clin Nutr; 2000 Dec; 19(6):425-35. PubMed ID: 11104594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy expenditure in critically ill children.
    Framson CM; LeLeiko NS; Dallal GE; Roubenoff R; Snelling LK; Dwyer JT
    Pediatr Crit Care Med; 2007 May; 8(3):264-7. PubMed ID: 17417117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children.
    Oosterveld MJ; Van Der Kuip M; De Meer K; De Greef HJ; Gemke RJ
    Pediatr Crit Care Med; 2006 Mar; 7(2):147-53. PubMed ID: 16531947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach.
    Mackintosh KA; Montoye AH; Pfeiffer KA; McNarry MA
    Physiol Meas; 2016 Oct; 37(10):1728-1740. PubMed ID: 27653339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.