These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24345741)

  • 1. Optimal starting block configuration in sprint running; a comparison of biological and prosthetic legs.
    Taboga P; Grabowski AM; di Prampero PE; Kram R
    J Appl Biomech; 2014 Jun; 30(3):381-9. PubMed ID: 24345741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of running speed and leg prostheses on mediolateral foot placement and its variability.
    Arellano CJ; McDermott WJ; Kram R; Grabowski AM
    PLoS One; 2015; 10(1):e0115637. PubMed ID: 25590634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees.
    Adamczyk PG; Kuo AD
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):776-85. PubMed ID: 25222950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanics of the fastest sprinter with a unilateral transtibial amputation.
    Beck ON; Grabowski AM
    J Appl Physiol (1985); 2018 Mar; 124(3):641-645. PubMed ID: 29051334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of expertise on 3D force application during the starting block phase and subsequent steps in sprint running.
    Otsuka M; Shim JK; Kurihara T; Yoshioka S; Nokata M; Isaka T
    J Appl Biomech; 2014 Jun; 30(3):390-400. PubMed ID: 24615252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprint Start Kinetics of Amputee and Non-Amputee Sprinters.
    Willwacher S; Herrmann V; Heinrich K; Funken J; Strutzenberger G; Goldmann JP; Braunstein B; Brazil A; Irwin G; Potthast W; Brüggemann GP
    PLoS One; 2016; 11(11):e0166219. PubMed ID: 27846241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First and Second Step Characteristics of Amputee and Able-Bodied Sprinters.
    Strutzenberger G; Brazil A; Exell T; von Lieres Und Wilkau H; Davies JD; Willwacher S; Funken J; Müller R; Heinrich K; Schwameder H; Potthast W; Irwin G
    Int J Sports Physiol Perform; 2018 Aug; 13(7):874-881. PubMed ID: 29252086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of prosthetic stiffness and added mass on metabolic power and asymmetry in female runners with a leg amputation.
    Ashcraft KR; Grabowski AM
    J Appl Physiol (1985); 2024 Jul; 137(1):85-98. PubMed ID: 38841756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 13. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Jul; 123(1):38-48. PubMed ID: 28360121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal parameters in sprinters with unilateral and bilateral transfemoral amputations and functional impairments.
    Hobara H; Hashizume S; Kobayashi Y; Namiki Y; Müller R; Funken J; Potthast W
    Eur J Appl Physiol; 2019 Jan; 119(1):85-90. PubMed ID: 30298456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Athletes With Versus Without Leg Amputations: Different Biomechanics, Similar Running Economy.
    Beck ON; Grabowski AM
    Exerc Sport Sci Rev; 2019 Jan; 47(1):15-21. PubMed ID: 30334850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Step Frequency and Step Length of 200-m Sprint in Able-bodied and Amputee Sprinters.
    Hobara H; Sano Y; Kobayashi Y; Heldoorn TA; Mochimaru M
    Int J Sports Med; 2016 Feb; 37(2):165-8. PubMed ID: 26509370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in spatiotemporal parameters during 200-m sprint between bilateral and unilateral transfemoral amputees.
    Hobara H; Saito S; Hashizume S; Namiki Y; Kobayashi Y
    Prosthet Orthot Int; 2018 Dec; 42(6):567-570. PubMed ID: 29687744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg amputation side determines performance in curve sprinting: a case study on a Paralympic medalist.
    Funken J; Heinrich K; Willwacher S; Müller R; Böcker J; Hobara H; Brüggemann GP; Potthast W
    Sports Biomech; 2019 Feb; 18(1):75-87. PubMed ID: 29132264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.
    Bezodis NE; Salo AI; Trewartha G
    Eur J Sport Sci; 2015; 15(2):118-24. PubMed ID: 24963548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.