BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24346034)

  • 1. Immunology: glyco-engineering 'super-self'.
    Macauley MS; Paulson JC
    Nat Chem Biol; 2014 Jan; 10(1):7-8. PubMed ID: 24346034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion.
    Hudak JE; Canham SM; Bertozzi CR
    Nat Chem Biol; 2014 Jan; 10(1):69-75. PubMed ID: 24292068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Roles of Siglec7 and Siglec9 on Natural Killer Cells in Virus Infection and Tumour Progression.
    Zheng Y; Ma X; Su D; Zhang Y; Yu L; Jiang F; Zhou X; Feng Y; Ma F
    J Immunol Res; 2020; 2020():6243819. PubMed ID: 32322597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viewing Siglecs through the lens of tumor immunology.
    Fraschilla I; Pillai S
    Immunol Rev; 2017 Mar; 276(1):178-191. PubMed ID: 28258691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins.
    Linnartz-Gerlach B; Mathews M; Neumann H
    Neuroscience; 2014 Sep; 275():113-24. PubMed ID: 24924144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Siglecs at the Host-Pathogen Interface.
    Chang YC; Nizet V
    Adv Exp Med Biol; 2020; 1204():197-214. PubMed ID: 32152948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deacetylated sialic acids modulates immune mediated cytotoxicity via the sialic acid-Siglec pathway.
    Grabenstein S; Barnard KN; Anim M; Armoo A; Weichert WS; Bertozzi CR; Parrish CR; Willand-Charnley R
    Glycobiology; 2021 Nov; 31(10):1279-1294. PubMed ID: 34192335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision glycocalyx editing as a strategy for cancer immunotherapy.
    Xiao H; Woods EC; Vukojicic P; Bertozzi CR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10304-9. PubMed ID: 27551071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siglec-7 expression is reduced on a natural killer (NK) cell subset of obese humans.
    Rosenstock P; Horstkorte R; Gnanapragassam VS; Harth J; Kielstein H
    Immunol Res; 2017 Oct; 65(5):1017-1024. PubMed ID: 28786023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sugar Free: Novel Immunotherapeutic Approaches Targeting Siglecs and Sialic Acids to Enhance Natural Killer Cell Cytotoxicity Against Cancer.
    Daly J; Carlsten M; O'Dwyer M
    Front Immunol; 2019; 10():1047. PubMed ID: 31143186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siglec-9 defines and restrains a natural killer subpopulation highly cytotoxic to HIV-infected cells.
    Adeniji OS; Kuri-Cervantes L; Yu C; Xu Z; Ho M; Chew GM; Shikuma C; Tomescu C; George AF; Roan NR; Ndhlovu LC; Liu Q; Muthumani K; Weiner DB; Betts MR; Xiao H; Abdel-Mohsen M
    PLoS Pathog; 2021 Nov; 17(11):e1010034. PubMed ID: 34762717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialic Acid Mimetics to Target the Sialic Acid-Siglec Axis.
    Büll C; Heise T; Adema GJ; Boltje TJ
    Trends Biochem Sci; 2016 Jun; 41(6):519-531. PubMed ID: 27085506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sialic acids in cancer biology and immunity.
    Pearce OM; Läubli H
    Glycobiology; 2016 Feb; 26(2):111-28. PubMed ID: 26518624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice.
    Klaus C; Hansen JN; Ginolhac A; Gérard D; Gnanapragassam VS; Horstkorte R; Rossdam C; Buettner FFR; Sauter T; Sinkkonen L; Neumann H; Linnartz-Gerlach B
    Neurobiol Aging; 2020 Apr; 88():91-107. PubMed ID: 32087947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siglec-9 Restrains Antibody-Dependent Natural Killer Cell Cytotoxicity against SARS-CoV-2.
    Saini P; Adeniji OS; Bordoloi D; Kinslow J; Martinson J; Parent DM; Hong KY; Koshy J; Kulkarni AJ; Zilberstein NF; Balk RA; Moy JN; Giron LB; Tracy RP; Keshavarzian A; Muthumani K; Landay A; Weiner DB; Abdel-Mohsen M
    mBio; 2023 Feb; 14(1):e0339322. PubMed ID: 36728420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The search for the missing 'missing-self' receptor on natural killer cells.
    Yokoyama WM
    Scand J Immunol; 2002 Mar; 55(3):233-7. PubMed ID: 11940229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, Synthesis, and Biological Evaluation of Small, High-Affinity Siglec-7 Ligands: Toward Novel Inhibitors of Cancer Immune Evasion.
    Prescher H; Frank M; Gütgemann S; Kuhfeldt E; Schweizer A; Nitschke L; Watzl C; Brossmer R
    J Med Chem; 2017 Feb; 60(3):941-956. PubMed ID: 28103033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new self: MHC-class-I-independent natural-killer-cell self-tolerance.
    Kumar V; McNerney ME
    Nat Rev Immunol; 2005 May; 5(5):363-74. PubMed ID: 15841099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells.
    Avril T; Floyd H; Lopez F; Vivier E; Crocker PR
    J Immunol; 2004 Dec; 173(11):6841-9. PubMed ID: 15557178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of CD22 and Siglec-G in B-cell tolerance and autoimmune disease.
    Müller J; Nitschke L
    Nat Rev Rheumatol; 2014 Jul; 10(7):422-8. PubMed ID: 24763061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.