These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2434630)

  • 21. Autoradiographic analysis in rat brain of the postnatal ontogeny of voltage-dependent Na+ channels, Ca2+-dependent K+ channels and slow Ca2+ channels identified as receptors for tetrodotoxin, apamin and (-)-desmethoxyverapamil.
    Mourre C; Cervera P; Lazdunski M
    Brain Res; 1987 Aug; 417(1):21-32. PubMed ID: 2441820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monovalent cation conductance in the ryanodine receptor-channel of sheep cardiac muscle sarcoplasmic reticulum.
    Lindsay AR; Manning SD; Williams AJ
    J Physiol; 1991 Aug; 439():463-80. PubMed ID: 1716676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural diversity among subtypes of small-conductance Ca2+-activated potassium channels.
    Wadsworth JD; Torelli S; Doorty KB; Strong PN
    Arch Biochem Biophys; 1997 Oct; 346(1):151-60. PubMed ID: 9328295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. m-Azido-phencyclidine covalently labels the rat brain PCP receptor, a putative K channel.
    Sorensen RG; Blaustein MP
    J Neurosci; 1986 Dec; 6(12):3676-81. PubMed ID: 2432204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor.
    Hugues M; Romey G; Duval D; Vincent JP; Lazdunski M
    Proc Natl Acad Sci U S A; 1982 Feb; 79(4):1308-12. PubMed ID: 6122211
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterisation of [(125)I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes.
    Finlayson K; McLuckie J; Hern J; Aramori I; Olverman HJ; Kelly JS
    Neuropharmacology; 2001 Sep; 41(3):341-50. PubMed ID: 11522325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstitution of the voltage-sensitive sodium channel of rat brain from solubilized components.
    Tamkun MM; Catterall WA
    J Biol Chem; 1981 Nov; 256(22):11457-63. PubMed ID: 6271752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle.
    Schmid-Antomarchi H; Renaud JF; Romey G; Hugues M; Schmid A; Lazdunski M
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2188-91. PubMed ID: 2580309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single calcium-activated potassium channels recorded from cultured rat sympathetic neurones.
    Smart TG
    J Physiol; 1987 Aug; 389():337-60. PubMed ID: 2445975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle.
    Blatz AL; Magleby KL
    J Gen Physiol; 1984 Jul; 84(1):1-23. PubMed ID: 6086805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role for potassium channels in the regulation of cortical muscarinic acetylcholine receptors in an in vitro slice preparation.
    Shaw C; van Huizen F; Cynader MS; Wilkinson M
    Brain Res Mol Brain Res; 1989 Jan; 5(1):71-83. PubMed ID: 2538705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of the electrogenic Na,K pump and Na,K-ATPase activity by tetraethylammonium, tetrabutylammonium, and apamin.
    Zemková H; Teisinger J; Vyskocil F
    J Neurosci Res; 1988 Apr; 19(4):497-503. PubMed ID: 2838645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ release by inositol 1,4,5-trisphosphate is blocked by the K(+)-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K+ ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein.
    O'Rourke F; Soons K; Flaumenhauft R; Watras J; Baio-Larue C; Matthews E; Feinstein MB
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):673-83. PubMed ID: 8010949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+ activated K+ conductance in molluscan neurones.
    Hermann A; Hartung K
    Cell Calcium; 1983 Dec; 4(5-6):387-405. PubMed ID: 6200233
    [No Abstract]   [Full Text] [Related]  

  • 37. Two distinct calcium-activated potassium currents in a rat anterior pituitary cell line.
    Ritchie AK
    J Physiol; 1987 Apr; 385():591-609. PubMed ID: 2443673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination between subtypes of apamin-sensitive Ca(2+)-activated K+ channels by gallamine and a novel bis-quaternary quinolinium cyclophane, UCL 1530.
    Dunn PM; Benton DC; Campos Rosa J; Ganellin CR; Jenkinson DH
    Br J Pharmacol; 1996 Jan; 117(1):35-42. PubMed ID: 8825340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tetraethylammonium blockade of apamin-sensitive and insensitive Ca2(+)-activated K+ channels in a pituitary cell line.
    Lang DG; Ritchie AK
    J Physiol; 1990 Jun; 425():117-32. PubMed ID: 1698974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.