BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24346481)

  • 1. Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide.
    Zhang H; Zhang X; Sun X; Ma Y
    Sci Rep; 2013 Dec; 3():3534. PubMed ID: 24346481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotubes/TiO2 nanotubes hybrid supercapacitor.
    Wang Q; Wen Z; Li J
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3328-31. PubMed ID: 18019169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.
    Jung N; Kwon S; Lee D; Yoon DM; Park YM; Benayad A; Choi JY; Park JS
    Adv Mater; 2013 Dec; 25(47):6854-8. PubMed ID: 24105733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes.
    Seo DH; Yick S; Han ZJ; Fang JH; Ostrikov KK
    ChemSusChem; 2014 Aug; 7(8):2317-24. PubMed ID: 24828784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature, controlled synthesis of carbon nanotubes.
    Dai L
    Small; 2005 Mar; 1(3):274-6. PubMed ID: 17193443
    [No Abstract]   [Full Text] [Related]  

  • 7. Revealing the Origin of Activity in Nitrogen-Doped Nanocarbons towards Electrocatalytic Reduction of Carbon Dioxide.
    Xu J; Kan Y; Huang R; Zhang B; Wang B; Wu KH; Lin Y; Sun X; Li Q; Centi G; Su D
    ChemSusChem; 2016 May; 9(10):1085-9. PubMed ID: 27100272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.
    Jiang H; Ma J; Li C
    Adv Mater; 2012 Aug; 24(30):4197-202. PubMed ID: 23030034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3 D Network-Structured Crumpled Graphene/Carbon Nanotube/Polyaniline Composites for Supercapacitors.
    Jo EH; Jang HD; Chang H; Kim SK; Choi JH; Lee CM
    ChemSusChem; 2017 May; 10(10):2210-2217. PubMed ID: 28383820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Graphene-Containing Porous Materials from Carbon for Capacitive Deionization of Water.
    Bakhia T; Khamizov RK; Bavizhev ZR; Bavizhev MD; Konov MA; Kozlov DA; Tikhonova SA; Maslakov KI; Ashurov MS; Melezhik AV; Kurnosov DA; Burakov AE; Tkachev AG
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32512896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.
    Moon GD; Joo JB; Yin Y
    Nanoscale; 2013 Dec; 5(23):11577-81. PubMed ID: 24114351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically Conjugated Carbon Nanotubes and Graphene for Carrier Modulation.
    Kim KK; Kim SM; Lee YH
    Acc Chem Res; 2016 Mar; 49(3):390-9. PubMed ID: 26878595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon materials for chemical capacitive energy storage.
    Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S
    Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density.
    Yu D; Goh K; Zhang Q; Wei L; Wang H; Jiang W; Chen Y
    Adv Mater; 2014 Oct; 26(39):6790-7. PubMed ID: 25182340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultraefficient Conversion of CO
    Liang C; Pan L; Liang S; Xia Y; Liang Z; Gan Y; Huang H; Zhang J; Zhang W
    Small; 2019 Aug; 15(33):e1902249. PubMed ID: 31231950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The carbon nanocosmos: novel materials for the twenty-first century.
    Terrones M; Terrones H
    Philos Trans A Math Phys Eng Sci; 2003 Dec; 361(1813):2789-806. PubMed ID: 14667298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.