These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24346483)

  • 21. TiO₂ Nanosheet-Redox Graphene Oxide/Sulphur Cathode for High-Performance Lithium-Sulphur Batteries.
    Hong S; Han Y; Zhang K; Wang M; Cui N; Du X; Li Q; Huang Y; Jiang F; Xie K
    J Nanosci Nanotechnol; 2020 Mar; 20(3):1715-1722. PubMed ID: 31492335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals.
    Park JH; Choi KM; Lee DK; Moon BC; Shin SR; Song MK; Kang JK
    Sci Rep; 2016 May; 6():25555. PubMed ID: 27149405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive role of surface defects on carbon nanotube cathodes in overpotential and capacity retention of rechargeable lithium-oxygen batteries.
    Huang S; Fan W; Guo X; Meng F; Liu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21567-75. PubMed ID: 25397991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells.
    Jiang J; Zhu J; Ai W; Wang X; Wang Y; Zou C; Huang W; Yu T
    Nat Commun; 2015 Oct; 6():8622. PubMed ID: 26470847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries.
    Shui JL; Okasinski JS; Kenesei P; Dobbs HA; Zhao D; Almer JD; Liu DJ
    Nat Commun; 2013; 4():2255. PubMed ID: 23929396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries.
    Wei Seh Z; Li W; Cha JJ; Zheng G; Yang Y; McDowell MT; Hsu PC; Cui Y
    Nat Commun; 2013; 4():1331. PubMed ID: 23299881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New approaches for high energy density lithium-sulfur battery cathodes.
    Evers S; Nazar LF
    Acc Chem Res; 2013 May; 46(5):1135-43. PubMed ID: 23054430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.
    Kim KR; Lee KS; Ahn CY; Yu SH; Sung YE
    Sci Rep; 2016 Aug; 6():32433. PubMed ID: 27573528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unravelling the Impact of Reaction Paths on Mechanical Degradation of Intercalation Cathodes for Lithium-Ion Batteries.
    Li J; Zhang Q; Xiao X; Cheng YT; Liang C; Dudney NJ
    J Am Chem Soc; 2015 Nov; 137(43):13732-5. PubMed ID: 26477353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation on the Cyclability of Lithium-Oxygen Cells in a Confined Potential Window using Cathodes with Pre-filled Discharge Products.
    Geng D; Ding N; Hor TS; Chien SW; Liu Z; Zong Y
    Chem Asian J; 2015 Oct; 10(10):2182-9. PubMed ID: 26011604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ultrafast rechargeable aluminium-ion battery.
    Lin MC; Gong M; Lu B; Wu Y; Wang DY; Guan M; Angell M; Chen C; Yang J; Hwang BJ; Dai H
    Nature; 2015 Apr; 520(7547):325-8. PubMed ID: 25849777
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimal charging profiles for mechanically constrained lithium-ion batteries.
    Suthar B; Ramadesigan V; De S; Braatz RD; Subramanian VR
    Phys Chem Chem Phys; 2014 Jan; 16(1):277-87. PubMed ID: 24252870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible Discharge Products in Li-Air Batteries.
    Liu T; Zhao S; Xiong Q; Yu J; Wang J; Huang G; Ni M; Zhang X
    Adv Mater; 2023 May; 35(20):e2208925. PubMed ID: 36502282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity.
    Nokami T; Matsuo T; Inatomi Y; Hojo N; Tsukagoshi T; Yoshizawa H; Shimizu A; Kuramoto H; Komae K; Tsuyama H; Yoshida J
    J Am Chem Soc; 2012 Dec; 134(48):19694-700. PubMed ID: 23130634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilisation of sulphur on cathodes of lithium-sulphur batteries via B-doped atomic-layer carbon materials.
    Rao D; Yang H; Shen X; Yan X; Qiao G
    Phys Chem Chem Phys; 2019 May; 21(21):10895-10901. PubMed ID: 30793127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.