BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24346855)

  • 1. Digital image correlation-based optical coherence elastography.
    Sun C; Standish B; Vuong B; Wen XY; Yang V
    J Biomed Opt; 2013 Dec; 18(12):121515. PubMed ID: 24346855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional static optical coherence elastography based on inverse compositional Gauss-Newton digital volume correlation.
    Meng F; Chen C; Hui S; Wang J; Feng Y; Sun C
    J Biophotonics; 2019 Sep; 12(9):e201800422. PubMed ID: 31008547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of mechanical contrast in optical coherence elastography.
    Kennedy KM; Ford C; Kennedy BF; Bush MB; Sampson DD
    J Biomed Opt; 2013 Dec; 18(12):121508. PubMed ID: 24220762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-resolution optical coherence elastography.
    Curatolo A; Villiger M; Lorenser D; Wijesinghe P; Fritz A; Kennedy BF; Sampson DD
    Opt Lett; 2016 Jan; 41(1):21-4. PubMed ID: 26696148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-accuracy optical coherence elastography digital volume correlation methods to measure depth regions with low correlation.
    Lin X; Chen J; Sun C
    J Biophotonics; 2024 Jan; 17(1):e202300094. PubMed ID: 37774123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic spectral-domain optical coherence elastography for tissue characterization.
    Liang X; Adie SG; John R; Boppart SA
    Opt Express; 2010 Jun; 18(13):14183-90. PubMed ID: 20588552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence elastography based on inverse compositional Gauss-Newton digital volume correlation with second-order shape function.
    Wu H; Wang J; Amaya Catano JA; Sun C; Li Z
    Opt Express; 2022 Nov; 30(23):41954-41968. PubMed ID: 36366659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crawling wave optical coherence elastography.
    Meemon P; Yao J; Chu YJ; Zvietcovich F; Parker KJ; Rolland JP
    Opt Lett; 2016 Mar; 41(5):847-50. PubMed ID: 26974061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence elastography in ophthalmology.
    Kirby MA; Pelivanov I; Song S; Ambrozinski Ł; Yoon SJ; Gao L; Li D; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2017 Dec; 22(12):1-28. PubMed ID: 29275544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional optical coherence elastography by phase-sensitive comparison of C-scans.
    Kennedy BF; Malheiro FG; Chin L; Sampson DD
    J Biomed Opt; 2014; 19(7):076006. PubMed ID: 25003754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-resolved acoustic radiation force optical coherence elastography.
    Qi W; Chen R; Chou L; Liu G; Zhang J; Zhou Q; Chen Z
    J Biomed Opt; 2012 Nov; 17(11):110505. PubMed ID: 23123971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical coherence elastography: current status and future applications.
    Sun C; Standish B; Yang VX
    J Biomed Opt; 2011 Apr; 16(4):043001. PubMed ID: 21529067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Audio frequency in vivo optical coherence elastography.
    Adie SG; Kennedy BF; Armstrong JJ; Alexandrov SA; Sampson DD
    Phys Med Biol; 2009 May; 54(10):3129-39. PubMed ID: 19420415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation-induced speckle-pattern evolution and feasibility of correlational speckle tracking in optical coherence elastography.
    Zaitsev VY; Matveyev AL; Matveev LA; Gelikonov GV; Gelikonov VM; Vitkin A
    J Biomed Opt; 2015 Jul; 20(7):75006. PubMed ID: 26172612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
    Zvietcovich F; Pongchalee P; Meemon P; Rolland JP; Parker KJ
    Nat Commun; 2019 Oct; 10(1):4895. PubMed ID: 31653846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lorentz force optical coherence elastography.
    Wu C; Singh M; Han Z; Raghunathan R; Liu CH; Li J; Schill A; Larin KV
    J Biomed Opt; 2016 Sep; 21(9):90502. PubMed ID: 27622242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial resolution in dynamic optical coherence elastography.
    Kirby MA; Zhou K; Pitre JJ; Gao L; Li D; Pelivanov I; Song S; Li C; Huang Z; Shen T; Wang R; O'Donnell M
    J Biomed Opt; 2019 Sep; 24(9):1-16. PubMed ID: 31535538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study.
    Han Z; Li J; Singh M; Wu C; Liu CH; Wang S; Idugboe R; Raghunathan R; Sudheendran N; Aglyamov SR; Twa MD; Larin KV
    Phys Med Biol; 2015 May; 60(9):3531-47. PubMed ID: 25860076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetomotive optical coherence elastography for microrheology of biological tissues.
    Crecea V; Ahmad A; Boppart SA
    J Biomed Opt; 2013 Dec; 18(12):121504. PubMed ID: 24145763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain and elasticity imaging in compression optical coherence elastography: The two-decade perspective and recent advances.
    Zaitsev VY; Matveyev AL; Matveev LA; Sovetsky AA; Hepburn MS; Mowla A; Kennedy BF
    J Biophotonics; 2021 Feb; 14(2):e202000257. PubMed ID: 32749033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.