These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 24346855)

  • 21. Optical coherence elastography and its applications for the biomechanical characterization of tissues.
    Wang C; Zhu J; Ma J; Meng X; Ma Z; Fan F
    J Biophotonics; 2023 Dec; 16(12):e202300292. PubMed ID: 37774137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Miniature probe for mapping mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography.
    Qu Y; Ma T; He Y; Yu M; Zhu J; Miao Y; Dai C; Patel P; Shung KK; Zhou Q; Chen Z
    Sci Rep; 2017 Jul; 7(1):4731. PubMed ID: 28680156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coaxial excitation longitudinal shear wave measurement for quantitative elasticity assessment using phase-resolved optical coherence elastography.
    Zhu J; Yu J; Qu Y; He Y; Li Y; Yang Q; Huo T; He X; Chen Z
    Opt Lett; 2018 May; 43(10):2388-2391. PubMed ID: 29762599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 2-D Ultrasonic Array-Based Optical Coherence Elastography.
    Kang H; Qian X; Chen R; Wodnicki R; Sun Y; Li R; Li Y; Shung KK; Chen Z; Zhou Q
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1096-1104. PubMed ID: 33095699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical coherence elastography for tissue characterization: a review.
    Wang S; Larin KV
    J Biophotonics; 2015 Apr; 8(4):279-302. PubMed ID: 25412100
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustomotive optical coherence elastography for measuring material mechanical properties.
    Liang X; Orescanin M; Toohey KS; Insana MF; Boppart SA
    Opt Lett; 2009 Oct; 34(19):2894-6. PubMed ID: 19794759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system.
    Wu C; Han Z; Wang S; Li J; Singh M; Liu CH; Aglyamov S; Emelianov S; Manns F; Larin KV
    Invest Ophthalmol Vis Sci; 2015 Jan; 56(2):1292-300. PubMed ID: 25613945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-Resolved Optical Coherence Elastography: An Insight into Tissue Displacement Estimation.
    Batista A; Serranho P; Santos MJ; Correia C; Domingues JP; Loureiro C; Cardoso J; Barbeiro S; Morgado M; Bernardes R
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depth-encoded optical coherence elastography for simultaneous volumetric imaging of two tissue faces.
    Fang Q; Frewer L; Wijesinghe P; Allen WM; Chin L; Hamzah J; Sampson DD; Curatolo A; Kennedy BF
    Opt Lett; 2017 Apr; 42(7):1233-1236. PubMed ID: 28362737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Moving-source elastic wave reconstruction for high-resolution optical coherence elastography.
    Hsieh BY; Song S; Nguyen TM; Yoon SJ; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2016 Nov; 21(11):116006. PubMed ID: 27822580
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical contrast in spectroscopic magnetomotive optical coherence elastography.
    Ahmad A; Huang PC; Sobh NA; Pande P; Kim J; Boppart SA
    Phys Med Biol; 2015 Sep; 60(17):6655-68. PubMed ID: 26271056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic optical coherence elastography.
    Adie SG; Liang X; Kennedy BF; John R; Sampson DD; Boppart SA
    Opt Express; 2010 Dec; 18(25):25519-34. PubMed ID: 21164898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Needle optical coherence elastography for tissue boundary detection.
    Kennedy KM; Kennedy BF; McLaughlin RA; Sampson DD
    Opt Lett; 2012 Jun; 37(12):2310-2. PubMed ID: 22739891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elastographic contrast generation in optical coherence tomography from a localized shear stress.
    Grimwood A; Garcia L; Bamber J; Holmes J; Woolliams P; Tomlins P; Pankhurst QA
    Phys Med Biol; 2010 Sep; 55(18):5515-28. PubMed ID: 20798457
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relaxation time constant based optical coherence elastography.
    Zhang D; Li C; Huang Z
    J Biophotonics; 2020 Jul; 13(7):e201960233. PubMed ID: 32166913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of fixation and preservation on tissue elastic properties measured by quantitative optical coherence elastography (OCE).
    Ling Y; Li C; Feng K; Duncan R; Eisma R; Huang Z; Nabi G
    J Biomech; 2016 May; 49(7):1009-1015. PubMed ID: 26903410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elastic stiffness characterization using three-dimensional full-field deformation obtained with optical coherence tomography and digital volume correlation.
    Fu J; Pierron F; Ruiz PD
    J Biomed Opt; 2013 Dec; 18(12):121512. PubMed ID: 24346854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vascular elasticity measurement of the great saphenous vein based on optical coherence elastography.
    Gao T; Liu S; Wang A; Tang X; Fan Y
    J Biophotonics; 2023 Feb; 16(2):e202200245. PubMed ID: 36067058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.