BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24347172)

  • 1. The reverse gyrase from Pyrobaculum calidifontis, a novel extremely thermophilic DNA topoisomerase endowed with DNA unwinding and annealing activities.
    Jamroze A; Perugino G; Valenti A; Rashid N; Rossi M; Akhtar M; Ciaramella M
    J Biol Chem; 2014 Feb; 289(6):3231-43. PubMed ID: 24347172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergic and opposing activities of thermophilic RecQ-like helicase and topoisomerase 3 proteins in Holliday junction processing and replication fork stabilization.
    Valenti A; De Felice M; Perugino G; Bizard A; Nadal M; Rossi M; Ciaramella M
    J Biol Chem; 2012 Aug; 287(36):30282-95. PubMed ID: 22722926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate and combined biochemical activities of the subunits of a naturally split reverse gyrase.
    Capp C; Qian Y; Sage H; Huber H; Hsieh TS
    J Biol Chem; 2010 Dec; 285(51):39637-45. PubMed ID: 20929866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms.
    D'Amaro A; Rossi M; Ciaramella M
    Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The archaeal topoisomerase reverse gyrase is a helix-destabilizing protein that unwinds four-way DNA junctions.
    Valenti A; Perugino G; Varriale A; D'Auria S; Rossi M; Ciaramella M
    J Biol Chem; 2010 Nov; 285(47):36532-41. PubMed ID: 20851892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y; Jungblut SP; Schmidt AS; Klostermeier D
    Nucleic Acids Res; 2008 Oct; 36(18):5882-95. PubMed ID: 18796525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling.
    Déclais AC; Marsault J; Confalonieri F; de La Tour CB; Duguet M
    J Biol Chem; 2000 Jun; 275(26):19498-504. PubMed ID: 10748189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A; del Toro Duany Y; Klostermeier D
    J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse gyrase and genome stability in hyperthermophilic organisms.
    Perugino G; Valenti A; D'amaro A; Rossi M; Ciaramella M
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):69-73. PubMed ID: 19143604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase.
    Vettone A; Perugino G; Rossi M; Valenti A; Ciaramella M
    Extremophiles; 2014 Sep; 18(5):895-904. PubMed ID: 25102812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D
    Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F; Weisslocker-Schaetzel M; Klostermeier D
    J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of reverse gyrase activities: insight into the evolution of a thermostable molecular machine.
    Valenti A; Perugino G; D'Amaro A; Cacace A; Napoli A; Rossi M; Ciaramella M
    Nucleic Acids Res; 2008 Aug; 36(14):4587-97. PubMed ID: 18614606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase.
    de la Tour CB; Amrani L; Cossard R; Neuman KC; Serre MC; Duguet M
    J Biol Chem; 2008 Oct; 283(41):27395-27402. PubMed ID: 18614530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus.
    Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M
    Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y; Klostermeier D; Rudolph MG
    Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y; Ganguly A; Klostermeier D
    Biol Chem; 2014 Jan; 395(1):83-93. PubMed ID: 23959663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Gyrase Functions in Genome Integrity Maintenance by Protecting DNA Breaks In Vivo.
    Han W; Feng X; She Q
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28640207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling.
    Rudolph MG; del Toro Duany Y; Jungblut SP; Ganguly A; Klostermeier D
    Nucleic Acids Res; 2013 Jan; 41(2):1058-70. PubMed ID: 23209025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.