These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 24347204)
21. Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors. Ohshima K; Hatakeyama K; Nagashima T; Watanabe Y; Kanto K; Doi Y; Ide T; Shimoda Y; Tanabe T; Ohnami S; Ohnami S; Serizawa M; Maruyama K; Akiyama Y; Urakami K; Kusuhara M; Mochizuki T; Yamaguchi K Sci Rep; 2017 Apr; 7(1):641. PubMed ID: 28377632 [TBL] [Abstract][Full Text] [Related]
22. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
23. Identification of genes involved in squamous cell carcinoma of the lung using synchronized data from DNA copy number and transcript expression profiling analysis. Lo KC; Stein LC; Panzarella JA; Cowell JK; Hawthorn L Lung Cancer; 2008 Mar; 59(3):315-31. PubMed ID: 18029052 [TBL] [Abstract][Full Text] [Related]
24. Genomic Copy Number Signatures Uncovered a Genetically Distinct Group from Adenocarcinoma and Squamous Cell Carcinoma in Non-Small Cell Lung Cancer. Lee E; Moon JW; Wang X; Kim C; Li S; Shin BK; Jung W; Kim HK; Kim HK; Lee JY Hum Pathol; 2015 Aug; 46(8):1111-20. PubMed ID: 26003479 [TBL] [Abstract][Full Text] [Related]
25. Identification of TRPC6 as a possible candidate target gene within an amplicon at 11q21-q22.2 for migratory capacity in head and neck squamous cell carcinomas. Bernaldo de Quirós S; Merlo A; Secades P; Zambrano I; de Santa María IS; Ugidos N; Jantus-Lewintre E; Sirera R; Suarez C; Chiara MD BMC Cancer; 2013 Mar; 13():116. PubMed ID: 23497198 [TBL] [Abstract][Full Text] [Related]
26. Driver gene detection through Bayesian network integration of mutation and expression profiles. Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191 [TBL] [Abstract][Full Text] [Related]
27. β-empirical Bayes inference and model diagnosis of microarray data. Mollah MM; Mollah MN; Kishino H BMC Bioinformatics; 2012 Jun; 13():135. PubMed ID: 22713095 [TBL] [Abstract][Full Text] [Related]
28. A Bayesian approach to joint modeling of protein-DNA binding, gene expression and sequence data. Xie Y; Pan W; Jeong KS; Xiao G; Khodursky AB Stat Med; 2010 Feb; 29(4):489-503. PubMed ID: 20049751 [TBL] [Abstract][Full Text] [Related]
29. Depicting the genetic architecture of pediatric cancers through an integrative gene network approach. Savary C; Kim A; Lespagnol A; Gandemer V; Pellier I; Andrieu C; Pagès G; Galibert MD; Blum Y; de Tayrac M Sci Rep; 2020 Jan; 10(1):1224. PubMed ID: 31988326 [TBL] [Abstract][Full Text] [Related]
30. Novel integrative methods for gene discovery associated with head and neck squamous cell carcinoma development. Smith IM; Mithani SK; Liu C; Chang SS; Begum S; Dhara M; Westra W; Sidranksy D; Califano JA Arch Otolaryngol Head Neck Surg; 2009 May; 135(5):487-95. PubMed ID: 19451471 [TBL] [Abstract][Full Text] [Related]
31. Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals FGFR1 amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Dubot C; Bernard V; Sablin MP; Vacher S; Chemlali W; Schnitzler A; Pierron G; Ait Rais K; Bessoltane N; Jeannot E; Klijanienko J; Mariani O; Jouffroy T; Calugaru V; Hoffmann C; Lesnik M; Badois N; Berger F; Le Tourneau C; Kamal M; Bieche I Eur J Cancer; 2018 Mar; 91():47-55. PubMed ID: 29331751 [TBL] [Abstract][Full Text] [Related]
32. Identification of driver genes regulating immune cell infiltration in cervical cancer by multiple omics integration. Wen Y; Zhang S; Yang J; Guo D Biomed Pharmacother; 2019 Dec; 120():109546. PubMed ID: 31675687 [TBL] [Abstract][Full Text] [Related]
33. Copy number gain of PIK3CA and MET is associated with poor prognosis in head and neck squamous cell carcinoma. Brauswetter D; Dános K; Gurbi B; Félegyházi ÉF; Birtalan E; Meggyesházi N; Krenács T; Tamás L; Peták I Virchows Arch; 2016 May; 468(5):579-87. PubMed ID: 26832731 [TBL] [Abstract][Full Text] [Related]
34. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
35. High-resolution copy number and gene expression microarray analyses of head and neck squamous cell carcinoma cell lines of tongue and larynx. Järvinen AK; Autio R; Kilpinen S; Saarela M; Leivo I; Grénman R; Mäkitie AA; Monni O Genes Chromosomes Cancer; 2008 Jun; 47(6):500-9. PubMed ID: 18314910 [TBL] [Abstract][Full Text] [Related]
36. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. Aure MR; Steinfeld I; Baumbusch LO; Liestøl K; Lipson D; Nyberg S; Naume B; Sahlberg KK; Kristensen VN; Børresen-Dale AL; Lingjærde OC; Yakhini Z PLoS One; 2013; 8(1):e53014. PubMed ID: 23382830 [TBL] [Abstract][Full Text] [Related]
37. Bayesian mixed hidden Markov models: a multi-level approach to modeling categorical outcomes with differential misclassification. Zhang Y; Berhane K Stat Med; 2014 Apr; 33(8):1395-408. PubMed ID: 24254432 [TBL] [Abstract][Full Text] [Related]
38. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. Hoover H; Li J; Marchese J; Rothwell C; Borawoski J; Jeffery DA; Gaither LA; Finkel N J Proteome Res; 2015 Sep; 14(9):3670-9. PubMed ID: 26151158 [TBL] [Abstract][Full Text] [Related]
39. Accumulation of potential driver genes with genomic alterations predicts survival of high-risk neuroblastoma patients. Suo C; Deng W; Vu TN; Li M; Shi L; Pawitan Y Biol Direct; 2018 Jul; 13(1):14. PubMed ID: 30012197 [TBL] [Abstract][Full Text] [Related]
40. Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Pasic I; Shlien A; Durbin AD; Stavropoulos DJ; Baskin B; Ray PN; Novokmet A; Malkin D Cancer Res; 2010 Jan; 70(1):160-71. PubMed ID: 20048075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]