These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24347293)

  • 1. Artificial leaf goes simpler and more efficient for solar fuel generation.
    Joya KS; de Groot HJ
    ChemSusChem; 2014 Jan; 7(1):73-6. PubMed ID: 24347293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode.
    Abdi FF; Han L; Smets AH; Zeman M; Dam B; van de Krol R
    Nat Commun; 2013; 4():2195. PubMed ID: 23893238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.
    Stefik M
    ChemSusChem; 2016 Jul; 9(13):1727-35. PubMed ID: 27246652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient water splitting via a heteroepitaxial BiVO(4) photoelectrode decorated with Co-Pi catalysts.
    Zhou M; Bao J; Bi W; Zeng Y; Zhu R; Tao M; Xie Y
    ChemSusChem; 2012 Aug; 5(8):1420-5. PubMed ID: 22848003
    [No Abstract]   [Full Text] [Related]  

  • 6. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells.
    Qiu Y; Liu W; Chen W; Chen W; Zhou G; Hsu PC; Zhang R; Liang Z; Fan S; Zhang Y; Cui Y
    Sci Adv; 2016 Jun; 2(6):e1501764. PubMed ID: 27386565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking the Key Functions of Photosystem II in Artificial Photosynthesis for Photoelectrocatalytic Water Splitting.
    Ye S; Ding C; Chen R; Fan F; Fu P; Yin H; Wang X; Wang Z; Du P; Li C
    J Am Chem Soc; 2018 Mar; 140(9):3250-3256. PubMed ID: 29338218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungsten-doped Bismuth Vanadate Photoanodes.
    Zhang B; Shi J; Ding C; Chong R; Zhang B; Wang Z; Li A; Liang Z; Liao S; Li C
    ChemSusChem; 2015 Dec; 8(23):4049-55. PubMed ID: 26609790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt-phosphate oxygen-evolving compound.
    Kanan MW; Surendranath Y; Nocera DG
    Chem Soc Rev; 2009 Jan; 38(1):109-14. PubMed ID: 19088970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bismuth Vanadate Photoelectrodes with High Photovoltage as Photoanode and Photocathode in Photoelectrochemical Cells for Water Splitting.
    Dos Santos WS; Rodriguez M; Khoury JMO; Nascimento LA; Ribeiro RJP; Mesquita JP; Silva AC; Nogueira FGE; Pereira MC
    ChemSusChem; 2018 Feb; 11(3):589-597. PubMed ID: 29193761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hole inversion layer at the BiVO4/Bi4V2O11 interface produces a high tunable photovoltage for water splitting.
    Dos Santos WS; Rodriguez M; Afonso AS; Mesquita JP; Nascimento LL; Patrocínio AO; Silva AC; Oliveira LC; Fabris JD; Pereira MC
    Sci Rep; 2016 Aug; 6():31406. PubMed ID: 27503274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mo-doped BiVO4 photoanodes synthesized by reactive sputtering.
    Chen L; Toma FM; Cooper JK; Lyon A; Lin Y; Sharp ID; Ager JW
    ChemSusChem; 2015 Mar; 8(6):1066-71. PubMed ID: 25705871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Formation of a Disordered Layer on Monoclinic BiVO
    Kim JK; Cho Y; Jeong MJ; Levy-Wendt B; Shin D; Yi Y; Wang DH; Zheng X; Park JH
    ChemSusChem; 2018 Mar; 11(5):933-940. PubMed ID: 29274301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective deposition of Ag₃PO₄ on monoclinic BiVO₄(040) for highly efficient photocatalysis.
    Li C; Zhang P; Lv R; Lu J; Wang T; Wang S; Wang H; Gong J
    Small; 2013 Dec; 9(23):3951-6, 3950. PubMed ID: 23824999
    [No Abstract]   [Full Text] [Related]  

  • 17. The artificial leaf.
    Nocera DG
    Acc Chem Res; 2012 May; 45(5):767-76. PubMed ID: 22475039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splitting water with cobalt.
    Artero V; Chavarot-Kerlidou M; Fontecave M
    Angew Chem Int Ed Engl; 2011 Aug; 50(32):7238-66. PubMed ID: 21748828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.
    Cristino V; Berardi S; Caramori S; Argazzi R; Carli S; Meda L; Tacca A; Bignozzi CA
    Phys Chem Chem Phys; 2013 Aug; 15(31):13083-92. PubMed ID: 23820552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.