These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 24347542)

  • 1. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.
    Depke M; Surmann K; Hildebrandt P; Jehmlich N; Michalik S; Stanca SE; Fritzsche W; Völker U; Schmidt F
    Cytometry A; 2014 Feb; 85(2):140-50. PubMed ID: 24347542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative fluorescent labeling strategies for characterizing gram-positive pathogenic bacteria: Flow cytometry supported counting, sorting, and proteome analysis of Staphylococcus aureus retrieved from infected host cells.
    Hildebrandt P; Surmann K; Salazar MG; Normann N; Völker U; Schmidt F
    Cytometry A; 2016 Oct; 89(10):932-940. PubMed ID: 27643682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the alternative sigma factor SigB of Staphylococcus aureus following internalization by epithelial cells - an in vivo proteomics perspective.
    Pförtner H; Burian MS; Michalik S; Depke M; Hildebrandt P; Dhople VM; Pané-Farré J; Hecker M; Schmidt F; Völker U
    Int J Med Microbiol; 2014 Mar; 304(2):177-87. PubMed ID: 24480029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proteomics workflow for quantitative and time-resolved analysis of adaptation reactions of internalized bacteria.
    Pförtner H; Wagner J; Surmann K; Hildebrandt P; Ernst S; Bernhardt J; Schurmann C; Gutjahr M; Depke M; Jehmlich U; Dhople V; Hammer E; Steil L; Völker U; Schmidt F
    Methods; 2013 Jun; 61(3):244-50. PubMed ID: 23643866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic perspective of the interplay of Staphylococcus aureus and human alveolar epithelial cells during infection.
    Surmann K; Simon M; Hildebrandt P; Pförtner H; Michalik S; Stentzel S; Steil L; Dhople VM; Bernhardt J; Schlüter R; Depke M; Gierok P; Lalk M; Bröker BM; Schmidt F; Völker U
    J Proteomics; 2015 Oct; 128():203-17. PubMed ID: 26244908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved quantitative proteome profiling of host-pathogen interactions: the response of Staphylococcus aureus RN1HG to internalisation by human airway epithelial cells.
    Schmidt F; Scharf SS; Hildebrandt P; Burian M; Bernhardt J; Dhople V; Kalinka J; Gutjahr M; Hammer E; Völker U
    Proteomics; 2010 Aug; 10(15):2801-11. PubMed ID: 20518028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells.
    Surmann K; Depke M; Dhople VM; Pané-Farré J; Hildebrandt P; Gumz J; Schaible UE; Völker U; Schmidt F
    Int J Med Microbiol; 2018 Aug; 308(6):664-674. PubMed ID: 29941384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Proteomics Reveals the Dynamics of Protein Phosphorylation in Human Bronchial Epithelial Cells during Internalization, Phagosomal Escape, and Intracellular Replication of Staphylococcus aureus.
    Richter E; Harms M; Ventz K; Nölker R; Fraunholz MJ; Mostertz J; Hochgräfe F
    J Proteome Res; 2016 Dec; 15(12):4369-4386. PubMed ID: 27762562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide resource for the analysis of Staphylococcus aureus in host-pathogen interaction studies.
    Depke M; Michalik S; Rabe A; Surmann K; Brinkmann L; Jehmlich N; Bernhardt J; Hecker M; Wollscheid B; Sun Z; Moritz RL; Völker U; Schmidt F
    Proteomics; 2015 Nov; 15(21):3648-61. PubMed ID: 26224020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome data from a host-pathogen interaction study with
    Surmann K; Simon M; Hildebrandt P; Pförtner H; Michalik S; Dhople VM; Bröker BM; Schmidt F; Völker U
    Data Brief; 2016 Jun; 7():1031-1037. PubMed ID: 27761493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analyses of Staphylococcus aureus in growing and non-growing cells: a physiological approach.
    Kohler C; Wolff S; Albrecht D; Fuchs S; Becher D; Büttner K; Engelmann S; Hecker M
    Int J Med Microbiol; 2005 Dec; 295(8):547-65. PubMed ID: 16325551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo Proteomics Approaches for the Analysis of Bacterial Adaptation Reactions in Host-Pathogen Settings.
    Pförtner H; Depke M; Surmann K; Schmidt F; Völker U
    Methods Mol Biol; 2018; 1841():207-228. PubMed ID: 30259489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic quantification of bacterial invasion by a novel antibody-independent staining method.
    Agerer F; Waeckerle S; Hauck CR
    J Microbiol Methods; 2004 Oct; 59(1):23-32. PubMed ID: 15325750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles.
    Pittet MJ; Swirski FK; Reynolds F; Josephson L; Weissleder R
    Nat Protoc; 2006; 1(1):73-9. PubMed ID: 17406214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein fingerprinting of Staphylococcus aureus by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection.
    Pelaez-Lorenzo C; Veledo MT; Gonzalez R; de Frutos M; Diez-Masa JC
    Methods Mol Biol; 2013; 984():237-51. PubMed ID: 23386348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence-encoded gold nanoparticles: library design and modulation of cellular uptake into dendritic cells.
    Rodriguez-Lorenzo L; Fytianos K; Blank F; von Garnier C; Rothen-Rutishauser B; Petri-Fink A
    Small; 2014 Apr; 10(7):1341-50. PubMed ID: 24482355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.
    Chou LY; Chan WC
    Adv Healthc Mater; 2012 Nov; 1(6):714-21. PubMed ID: 23184822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation.
    Park HY; Schadt MJ; Wang L; Lim II; Njoki PN; Kim SH; Jang MY; Luo J; Zhong CJ
    Langmuir; 2007 Aug; 23(17):9050-6. PubMed ID: 17629315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel antibody/gold nanoparticle/magnetic nanoparticle nanocomposites for immunomagnetic separation and rapid colorimetric detection of Staphylococcus aureus in milk.
    Sung YJ; Suk HJ; Sung HY; Li T; Poo H; Kim MG
    Biosens Bioelectron; 2013 May; 43():432-9. PubMed ID: 23370174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation.
    Liese J; Rooijakkers SH; van Strijp JA; Novick RP; Dustin ML
    Cell Microbiol; 2013 Jun; 15(6):891-909. PubMed ID: 23217115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.