These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24348337)

  • 1. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release.
    Lazarevic V; Pothula S; Andres-Alonso M; Fejtova A
    Front Cell Neurosci; 2013 Dec; 7():244. PubMed ID: 24348337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing.
    Lazarevic V; Schöne C; Heine M; Gundelfinger ED; Fejtova A
    J Neurosci; 2011 Jul; 31(28):10189-200. PubMed ID: 21752995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous Tagging Reveals Differential Regulation of Ca
    Gratz SJ; Goel P; Bruckner JJ; Hernandez RX; Khateeb K; Macleod GT; Dickman D; O'Connor-Giles KM
    J Neurosci; 2019 Mar; 39(13):2416-2429. PubMed ID: 30692227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool.
    Müller M; Liu KS; Sigrist SJ; Davis GW
    J Neurosci; 2012 Nov; 32(47):16574-85. PubMed ID: 23175813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity.
    Leenders AG; Sheng ZH
    Pharmacol Ther; 2005 Jan; 105(1):69-84. PubMed ID: 15626456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of Presynaptic Autophagy-Related Processes.
    Gundelfinger ED; Karpova A; Pielot R; Garner CC; Kreutz MR
    Front Synaptic Neurosci; 2022; 14():829354. PubMed ID: 35368245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homeostatic control of presynaptic neurotransmitter release.
    Davis GW; Müller M
    Annu Rev Physiol; 2015; 77():251-70. PubMed ID: 25386989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snapin is critical for presynaptic homeostatic plasticity.
    Dickman DK; Tong A; Davis GW
    J Neurosci; 2012 Jun; 32(25):8716-24. PubMed ID: 22723711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bassoon and piccolo regulate ubiquitination and link presynaptic molecular dynamics with activity-regulated gene expression.
    Ivanova D; Dirks A; Fejtova A
    J Physiol; 2016 Oct; 594(19):5441-8. PubMed ID: 26915533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fife organizes synaptic vesicles and calcium channels for high-probability neurotransmitter release.
    Bruckner JJ; Zhan H; Gratz SJ; Rao M; Ukken F; Zilberg G; O'Connor-Giles KM
    J Cell Biol; 2017 Jan; 216(1):231-246. PubMed ID: 27998991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysbindin links presynaptic proteasome function to homeostatic recruitment of low release probability vesicles.
    Wentzel C; Delvendahl I; Sydlik S; Georgiev O; Müller M
    Nat Commun; 2018 Jan; 9(1):267. PubMed ID: 29348419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homeostatic plasticity-a presynaptic perspective.
    Delvendahl I; Müller M
    Curr Opin Neurobiol; 2019 Feb; 54():155-162. PubMed ID: 30384022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms that stabilize short term synaptic plasticity during presynaptic homeostatic plasticity.
    Ortega JM; Genç Ö; Davis GW
    Elife; 2018 Nov; 7():. PubMed ID: 30422113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell adhesion and homeostatic synaptic plasticity.
    Thalhammer A; Cingolani LA
    Neuropharmacology; 2014 Mar; 78():23-30. PubMed ID: 23542441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homeostatic control of Drosophila neuromuscular junction function.
    Frank CA; James TD; Müller M
    Synapse; 2020 Jan; 74(1):e22133. PubMed ID: 31556149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid active zone remodeling consolidates presynaptic potentiation.
    Böhme MA; McCarthy AW; Grasskamp AT; Beuschel CB; Goel P; Jusyte M; Laber D; Huang S; Rey U; Petzoldt AG; Lehmann M; Göttfert F; Haghighi P; Hell SW; Owald D; Dickman D; Sigrist SJ; Walter AM
    Nat Commun; 2019 Mar; 10(1):1085. PubMed ID: 30842428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing and expressing homeostatic synaptic plasticity.
    Rich MM; Wenner P
    Trends Neurosci; 2007 Mar; 30(3):119-25. PubMed ID: 17267052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homeostatic Regulation of Motoneuron Properties in Development.
    Wenner PA; Pekala D
    Adv Neurobiol; 2022; 28():87-107. PubMed ID: 36066822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular organization and plasticity of the cytomatrix at the active zone.
    Gundelfinger ED; Fejtova A
    Curr Opin Neurobiol; 2012 Jun; 22(3):423-30. PubMed ID: 22030346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release.
    Matz J; Gilyan A; Kolar A; McCarvill T; Krueger SR
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8836-41. PubMed ID: 20421490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.