BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 24348377)

  • 1. Self-assembled liposomal nanoparticles in photodynamic therapy.
    Sadasivam M; Avci P; Gupta GK; Lakshmanan S; Chandran R; Huang YY; Kumar R; Hamblin MR
    Eur J Nanomed; 2013 Jul; 5(3):. PubMed ID: 24348377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic therapy: one step ahead with self-assembled nanoparticles.
    Avci P; Erdem SS; Hamblin MR
    J Biomed Nanotechnol; 2014 Sep; 10(9):1937-52. PubMed ID: 25580097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can nanotechnology potentiate photodynamic therapy?
    Huang YY; Sharma SK; Dai T; Chung H; Yaroslavsky A; Garcia-Diaz M; Chang J; Chiang LY; Hamblin MR
    Nanotechnol Rev; 2012 Mar; 1(2):111-146. PubMed ID: 26361572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin.
    Pallavi P; Harini K; Anand Arumugam V; Gowtham P; Girigoswami K; Muthukrishnan S; Girigoswami A
    Evid Based Complement Alternat Med; 2022; 2022():3011918. PubMed ID: 36212948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liposomal nanostructures for photosensitizer delivery.
    Jin CS; Zheng G
    Lasers Surg Med; 2011 Sep; 43(7):734-48. PubMed ID: 22057501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnology for photodynamic therapy: a perspective from the Laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School.
    Hamblin MR; Chiang LY; Lakshmanan S; Huang YY; Garcia-Diaz M; Karimi M; de Souza Rastelli AN; Chandran R
    Nanotechnol Rev; 2015 Aug; 4(4):359-372. PubMed ID: 26640747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Soluble, Zwitterionic Poly-photosensitizers as Carrier-Free, Photosensitizer-Self-Delivery System for in Vivo Photodynamic Therapy.
    Zheng N; Xie D; Wang C; Zhang Z; Zheng Y; Lu Q; Bai Y; Li Y; Wang A; Song W
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44007-44017. PubMed ID: 31696699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers.
    Wang D; Niu L; Qiao ZY; Cheng DB; Wang J; Zhong Y; Bai F; Wang H; Fan H
    ACS Nano; 2018 Apr; 12(4):3796-3803. PubMed ID: 29611423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Monomeric Hydrophobic Photosensitizers with Short Peptides Forming Photodynamic Nanoparticles with Real-Time Tracking Property and without the Need of Release in Vivo.
    Li J; Wang A; Zhao L; Dong Q; Wang M; Xu H; Yan X; Bai S
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28420-28427. PubMed ID: 30067331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
    Kim Y; Uthaman S; Pillarisetti S; Noh K; Huh KM; Park IK
    Acta Biomater; 2020 May; 108():273-284. PubMed ID: 32205212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New photosensitizers for photodynamic therapy.
    Abrahamse H; Hamblin MR
    Biochem J; 2016 Feb; 473(4):347-64. PubMed ID: 26862179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug discovery of antimicrobial photosensitizers using animal models.
    Sharma SK; Dai T; Kharkwal GB; Huang YY; Huang L; De Arce VJ; Tegos GP; Hamblin MR
    Curr Pharm Des; 2011; 17(13):1303-19. PubMed ID: 21504410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From molecules to nanovectors: Current state of the art and applications of photosensitizers in photodynamic therapy.
    Verger A; Brandhonneur N; Molard Y; Cordier S; Kowouvi K; Amela-Cortes M; Dollo G
    Int J Pharm; 2021 Jul; 604():120763. PubMed ID: 34098054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy.
    Zhang Y; Wang B; Zhao R; Zhang Q; Kong X
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111099. PubMed ID: 32600703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell poly-methyl methacrylate nanoparticles covalently functionalized with a non-symmetric porphyrin for anticancer photodynamic therapy.
    Ballestri M; Caruso E; Guerrini A; Ferroni C; Banfi S; Gariboldi M; Monti E; Sotgiu G; Varchi G
    J Photochem Photobiol B; 2018 Sep; 186():169-177. PubMed ID: 30064063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms.
    Sibani SA; McCarron PA; Woolfson AD; Donnelly RF
    Expert Opin Drug Deliv; 2008 Nov; 5(11):1241-54. PubMed ID: 18976134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer.
    Mokwena MG; Kruger CA; Ivan MT; Heidi A
    Photodiagnosis Photodyn Ther; 2018 Jun; 22():147-154. PubMed ID: 29588217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attritional evaluation of lipophilic and hydrophilic metallated phthalocyanines for oncological photodynamic therapy.
    Dias LM; Sharifi F; de Keijzer MJ; Mesquita B; Desclos E; Kochan JA; de Klerk DJ; Ernst D; de Haan LR; Franchi LP; van Wijk AC; Scutigliani EM; Cavaco JEB; Tedesco AC; Huang X; Pan W; Ding B; Krawczyk PM; Heger M;
    J Photochem Photobiol B; 2021 Mar; 216():112146. PubMed ID: 33601256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing Photodynamic Therapy in Transgenic Zebrafish Using Organic Nanoparticles with Aggregation-Induced Emission.
    Manghnani PN; Wu W; Xu S; Hu F; Teh C; Liu B
    Nanomicro Lett; 2018; 10(4):61. PubMed ID: 30393709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer].
    Roblero-Bartolón GV; Ramón-Gallegos E
    Gac Med Mex; 2015; 151(1):85-98. PubMed ID: 25739488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.