These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24348517)

  • 1. On protocols and measures for the validation of supervised methods for the inference of biological networks.
    Schrynemackers M; Küffner R; Geurts P
    Front Genet; 2013 Dec; 4():262. PubMed ID: 24348517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying pairs with trees for supervised biological network inference.
    Schrynemackers M; Wehenkel L; Babu MM; Geurts P
    Mol Biosyst; 2015 Aug; 11(8):2116-25. PubMed ID: 26008881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algebraic shortcuts for leave-one-out cross-validation in supervised network inference.
    Stock M; Pahikkala T; Airola A; Waegeman W; De Baets B
    Brief Bioinform; 2020 Jan; 21(1):262-271. PubMed ID: 30329015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional networks inference from rule-based machine learning models.
    Lazzarini N; Widera P; Williamson S; Heer R; Krasnogor N; Bacardit J
    BioData Min; 2016; 9(1):28. PubMed ID: 27597880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning a Markov Logic network for supervised gene regulatory network inference.
    Brouard C; Vrain C; Dubois J; Castel D; Debily MA; d'Alché-Buc F
    BMC Bioinformatics; 2013 Sep; 14():273. PubMed ID: 24028533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge.
    Lecca P
    Front Bioinform; 2021; 1():746712. PubMed ID: 36303798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing false discoveries in network inference.
    Petri T; Altmann S; Geistlinger L; Zimmer R; Küffner R
    Bioinformatics; 2015 Sep; 31(17):2836-43. PubMed ID: 25910697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new pairwise kernel for biological network inference with support vector machines.
    Vert JP; Qiu J; Noble WS
    BMC Bioinformatics; 2007; 8 Suppl 10(Suppl 10):S8. PubMed ID: 18269702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algebra-based method for inferring gene regulatory networks.
    Vera-Licona P; Jarrah A; Garcia-Puente LD; McGee J; Laubenbacher R
    BMC Syst Biol; 2014 Mar; 8():37. PubMed ID: 24669835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sets2Networks: network inference from repeated observations of sets.
    Clark NR; Dannenfelser R; Tan CM; Komosinski ME; Ma'ayan A
    BMC Syst Biol; 2012 Jul; 6():89. PubMed ID: 22824380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional inference of complex anatomical tendinous networks at a macroscopic scale via sparse experimentation.
    Saxena A; Lipson H; Valero-Cuevas FJ
    PLoS Comput Biol; 2012; 8(11):e1002751. PubMed ID: 23144601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective integration of multiple biological data for supervised network inference.
    Kato T; Tsuda K; Asai K
    Bioinformatics; 2005 May; 21(10):2488-95. PubMed ID: 15728114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervised learning is an accurate method for network-based gene classification.
    Liu R; Mancuso CA; Yannakopoulos A; Johnson KA; Krishnan A
    Bioinformatics; 2020 Jun; 36(11):3457-3465. PubMed ID: 32129827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets.
    Madhamshettiwar PB; Maetschke SR; Davis MJ; Reverter A; Ragan MA
    Genome Med; 2012 May; 4(5):41. PubMed ID: 22548828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential gene prediction using limited gene essentiality information-An integrative semi-supervised machine learning strategy.
    Nandi S; Ganguli P; Sarkar RR
    PLoS One; 2020; 15(11):e0242943. PubMed ID: 33253254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.