These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24349160)

  • 41. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness.
    Liu M; Thomas PD
    BMC Bioinformatics; 2019 Mar; 20(1):155. PubMed ID: 30917779
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AuDis: an automatic CRF-enhanced disease normalization in biomedical text.
    Lee HC; Hsu YY; Kao HY
    Database (Oxford); 2016; 2016():. PubMed ID: 27278815
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Extracting Biomedical Event with Dual Decomposition Integrating Word Embeddings.
    Li L; Liu S; Qin M; Wang Y; Huang D
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):669-77. PubMed ID: 26357404
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Extraction of chemical-induced diseases using prior knowledge and textual information.
    Pons E; Becker BF; Akhondi SA; Afzal Z; van Mulligen EM; Kors JA
    Database (Oxford); 2016; 2016():. PubMed ID: 27081155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recognition of protein/gene names from text using an ensemble of classifiers.
    Zhou G; Shen D; Zhang J; Su J; Tan S
    BMC Bioinformatics; 2005; 6 Suppl 1(Suppl 1):S7. PubMed ID: 15960841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Handling Big Data Scalability in Biological Domain Using Parallel and Distributed Processing: A Case of Three Biological Semantic Similarity Measures.
    Almasoud AM; Al-Khalifa HS; Al-Salman AS
    Biomed Res Int; 2019; 2019():6750296. PubMed ID: 30809545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative analysis of gene ontology-based semantic similarity measurements for the application of identifying essential proteins.
    Xue X; Zhang W; Fan A
    PLoS One; 2023; 18(4):e0284274. PubMed ID: 37083829
    [TBL] [Abstract][Full Text] [Related]  

  • 48. BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
    Li J; Sun Y; Johnson RJ; Sciaky D; Wei CH; Leaman R; Davis AP; Mattingly CJ; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27161011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multistage gene normalization and SVM-based ranking for protein interactor extraction in full-text articles.
    Dai HJ; Lai PT; Tsai RT
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(3):412-20. PubMed ID: 20479501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. OrganismTagger: detection, normalization and grounding of organism entities in biomedical documents.
    Naderi N; Kappler T; Baker CJ; Witte R
    Bioinformatics; 2011 Oct; 27(19):2721-9. PubMed ID: 21828087
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Simple, Fast, Filter-Based Algorithm for Approximate Circular Pattern Matching.
    Azim MA; Iliopoulos CS; Rahman MS; Samiruzzaman M
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):93-100. PubMed ID: 26992174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The GNAT library for local and remote gene mention normalization.
    Hakenberg J; Gerner M; Haeussler M; Solt I; Plake C; Schroeder M; Gonzalez G; Nenadic G; Bergman CM
    Bioinformatics; 2011 Oct; 27(19):2769-71. PubMed ID: 21813477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MINT and IntAct contribute to the Second BioCreative challenge: serving the text-mining community with high quality molecular interaction data.
    Chatr-aryamontri A; Kerrien S; Khadake J; Orchard S; Ceol A; Licata L; Castagnoli L; Costa S; Derow C; Huntley R; Aranda B; Leroy C; Thorneycroft D; Apweiler R; Cesareni G; Hermjakob H
    Genome Biol; 2008; 9 Suppl 2(Suppl 2):S5. PubMed ID: 18834496
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall.
    Lowe DM; O'Boyle NM; Sayle RA
    Database (Oxford); 2016; 2016():. PubMed ID: 27060160
    [TBL] [Abstract][Full Text] [Related]  

  • 56. NCBI disease corpus: a resource for disease name recognition and concept normalization.
    Doğan RI; Leaman R; Lu Z
    J Biomed Inform; 2014 Feb; 47():1-10. PubMed ID: 24393765
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Various criteria in the evaluation of biomedical named entity recognition.
    Tsai RT; Wu SH; Chou WC; Lin YC; He D; Hsiang J; Sung TY; Hsu WL
    BMC Bioinformatics; 2006 Feb; 7():92. PubMed ID: 16504116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluating semantic similarity between Chinese biomedical terms through multiple ontologies with score normalization: An initial study.
    Ning W; Yu M; Kong D
    J Biomed Inform; 2016 Dec; 64():273-287. PubMed ID: 27810481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition.
    Xu K; Yang Z; Kang P; Wang Q; Liu W
    Comput Biol Med; 2019 May; 108():122-132. PubMed ID: 31003175
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature.
    Kuo CJ; Ling MH; Lin KT; Hsu CN
    BMC Bioinformatics; 2009 Dec; 10 Suppl 15(Suppl 15):S7. PubMed ID: 19958517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.