These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 24349290)
1. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1). Chufan EE; Kapoor K; Sim HM; Singh S; Talele TT; Durell SR; Ambudkar SV PLoS One; 2013; 8(12):e82463. PubMed ID: 24349290 [TBL] [Abstract][Full Text] [Related]
2. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein. Chufan EE; Kapoor K; Ambudkar SV Biochem Pharmacol; 2016 Feb; 101():40-53. PubMed ID: 26686578 [TBL] [Abstract][Full Text] [Related]
3. Evidence for the critical role of transmembrane helices 1 and 7 in substrate transport by human P-glycoprotein (ABCB1). Sajid A; Lusvarghi S; Chufan EE; Ambudkar SV PLoS One; 2018; 13(9):e0204693. PubMed ID: 30265721 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of multidrug resistance-linked P-glycoprotein (ABCB1) function by 5'-fluorosulfonylbenzoyl 5'-adenosine: evidence for an ATP analogue that interacts with both drug-substrate-and nucleotide-binding sites. Ohnuma S; Chufan E; Nandigama K; Jenkins LM; Durell SR; Appella E; Sauna ZE; Ambudkar SV Biochemistry; 2011 May; 50(18):3724-35. PubMed ID: 21452853 [TBL] [Abstract][Full Text] [Related]
5. Allosteric modulation bypasses the requirement for ATP hydrolysis in regenerating low affinity transition state conformation of human P-glycoprotein. Maki N; Moitra K; Ghosh P; Dey S J Biol Chem; 2006 Apr; 281(16):10769-77. PubMed ID: 16505485 [TBL] [Abstract][Full Text] [Related]
6. Evidence for modulatory sites at the lipid-protein interface of the human multidrug transporter P-glycoprotein. Mandal D; Moitra K; Ghosh D; Xia D; Dey S Biochemistry; 2012 Apr; 51(13):2852-66. PubMed ID: 22360349 [TBL] [Abstract][Full Text] [Related]
7. Importance of the conserved Walker B glutamate residues, 556 and 1201, for the completion of the catalytic cycle of ATP hydrolysis by human P-glycoprotein (ABCB1). Sauna ZE; Müller M; Peng XH; Ambudkar SV Biochemistry; 2002 Nov; 41(47):13989-4000. PubMed ID: 12437356 [TBL] [Abstract][Full Text] [Related]
8. P-glycoprotein function involves conformational transitions detectable by differential immunoreactivity. Mechetner EB; Schott B; Morse BS; Stein WD; Druley T; Davis KA; Tsuruo T; Roninson IB Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12908-13. PubMed ID: 9371774 [TBL] [Abstract][Full Text] [Related]
9. Shedding light on drug transport: structure and function of the P-glycoprotein multidrug transporter (ABCB1). Sharom FJ Biochem Cell Biol; 2006 Dec; 84(6):979-92. PubMed ID: 17215884 [TBL] [Abstract][Full Text] [Related]
10. Substrate-induced conformational changes in the nucleotide-binding domains of lipid bilayer-associated P-glycoprotein during ATP hydrolysis. Zoghbi ME; Mok L; Swartz DJ; Singh A; Fendley GA; Urbatsch IL; Altenberg GA J Biol Chem; 2017 Dec; 292(50):20412-20424. PubMed ID: 29018094 [TBL] [Abstract][Full Text] [Related]
11. Both ATP sites of human P-glycoprotein are essential but not symmetric. Hrycyna CA; Ramachandra M; Germann UA; Cheng PW; Pastan I; Gottesman MM Biochemistry; 1999 Oct; 38(42):13887-99. PubMed ID: 10529234 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Robey RW; Shukla S; Finley EM; Oldham RK; Barnett D; Ambudkar SV; Fojo T; Bates SE Biochem Pharmacol; 2008 Mar; 75(6):1302-12. PubMed ID: 18234154 [TBL] [Abstract][Full Text] [Related]
13. Transition state analysis of the coupling of drug transport to ATP hydrolysis by P-glycoprotein. Al-Shawi MK; Polar MK; Omote H; Figler RA J Biol Chem; 2003 Dec; 278(52):52629-40. PubMed ID: 14551217 [TBL] [Abstract][Full Text] [Related]
14. Use of baculovirus BacMam vectors for expression of ABC drug transporters in mammalian cells. Shukla S; Schwartz C; Kapoor K; Kouanda A; Ambudkar SV Drug Metab Dispos; 2012 Feb; 40(2):304-12. PubMed ID: 22041108 [TBL] [Abstract][Full Text] [Related]
15. Nucleotide-induced conformational changes in P-glycoprotein and in nucleotide binding site mutants monitored by trypsin sensitivity. Julien M; Gros P Biochemistry; 2000 Apr; 39(15):4559-68. PubMed ID: 10758006 [TBL] [Abstract][Full Text] [Related]
16. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships. Di Pietro A; Dayan G; Conseil G; Steinfels E; Krell T; Trompier D; Baubichon-Cortay H; Jault J Braz J Med Biol Res; 1999 Aug; 32(8):925-39. PubMed ID: 10454753 [TBL] [Abstract][Full Text] [Related]
17. Contribution to substrate specificity and transport of nonconserved residues in transmembrane domain 12 of human P-glycoprotein. Hafkemeyer P; Dey S; Ambudkar SV; Hrycyna CA; Pastan I; Gottesman MM Biochemistry; 1998 Nov; 37(46):16400-9. PubMed ID: 9819232 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Oct; 278(41):39706-10. PubMed ID: 12909621 [TBL] [Abstract][Full Text] [Related]
19. Permanent activation of the human P-glycoprotein by covalent modification of a residue in the drug-binding site. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Jun; 278(23):20449-52. PubMed ID: 12711602 [TBL] [Abstract][Full Text] [Related]
20. Reversing the direction of drug transport mediated by the human multidrug transporter P-glycoprotein. Sajid A; Lusvarghi S; Murakami M; Chufan EE; Abel B; Gottesman MM; Durell SR; Ambudkar SV Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29609-29617. PubMed ID: 33168729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]