BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24349305)

  • 41. Cataract-linked γD-crystallin mutants have weak affinity to lens chaperones α-crystallins.
    Mishra S; Stein RA; McHaourab HS
    FEBS Lett; 2012 Feb; 586(4):330-6. PubMed ID: 22289178
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Eye lens crystallin proteins inhibit the autocatalytic amyloid amplification nature of mature α-synuclein fibrils.
    Gaspar R; Garting T; Stradner A
    PLoS One; 2020; 15(6):e0235198. PubMed ID: 32598365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation of alpha and beta crystallin expression in rat retinas with ocular hypertension-induced ganglion cell degeneration.
    Piri N; Song M; Kwong JM; Caprioli J
    Brain Res; 2007 Apr; 1141():1-9. PubMed ID: 17316577
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Crosslinking of human lens 9 kDa gammaD-crystallin fragment in vitro and in vivo.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Dec; 9():644-56. PubMed ID: 14685148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 46. AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens.
    Goishi K; Shimizu A; Najarro G; Watanabe S; Rogers R; Zon LI; Klagsbrun M
    Development; 2006 Jul; 133(13):2585-93. PubMed ID: 16728471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction of lens alpha and gamma crystallins during aging of the bovine lens.
    Peterson J; Radke G; Takemoto L
    Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation of Crystallin Expression and RGC Susceptibility in Experimental Glaucoma Rats of Different Ages.
    Anders F; Mann C; Liu A; Teister J; Funke S; Thanos S; Grus F; Pfeiffer N; Prokosch V
    Curr Eye Res; 2018 Oct; 43(10):1267-1273. PubMed ID: 29979889
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway.
    Sun Y; Liu YX
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):2941-2948. PubMed ID: 29863235
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chordate betagamma-crystallins and the evolutionary developmental biology of the vertebrate lens.
    Riyahi K; Shimeld SM
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jul; 147(3):347-57. PubMed ID: 17493858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-dependent association of gamma-crystallins with aged alpha-crystallins from old bovine lens.
    Takemoto L; Ponce A; Sorensen CM
    Mol Vis; 2008 May; 14():970-4. PubMed ID: 18509547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in physicochemical parameters and alpha-crystallin expression in the lens during cataract development in OXYS rats. 5.
    Rumyantseva YV; Fursova AZh; Fedoseeva LA; Kolosova NG
    Biochemistry (Mosc); 2008 Nov; 73(11):1176-82. PubMed ID: 19120020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of insulin resistance in experimental diabetic retinopathy-Genetic and molecular aspects.
    Järgen P; Dietrich A; Herling AW; Hammes HP; Wohlfart P
    PLoS One; 2017; 12(6):e0178658. PubMed ID: 28575111
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium Binding Dramatically Stabilizes an Ancestral Crystallin Fold in Tunicate βγ-Crystallin.
    Kozlyuk N; Sengupta S; Bierma JC; Martin RW
    Biochemistry; 2016 Dec; 55(50):6961-6968. PubMed ID: 27992995
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina.
    Mueller NH; Fogueri U; Pedler MG; Montana K; Petrash JM; Ammar DA
    PLoS One; 2015; 10(9):e0137659. PubMed ID: 26355842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats.
    Gonçalves A; Marques C; Leal E; Ribeiro CF; Reis F; Ambrósio AF; Fernandes R
    Biochim Biophys Acta; 2014 Sep; 1842(9):1454-63. PubMed ID: 24769045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light induced and circadian effects on retinal photoreceptor cell crystallins.
    Organisciak D; Darrow R; Barsalou L; Rapp C; McDonald B; Wong P
    Photochem Photobiol; 2011; 87(1):151-9. PubMed ID: 21091955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of CTGF in the diabetic rat retina and its relationship with VEGF and TGF-β(2) , elucidated by treatment with CTGFsiRNA.
    Yang H; Huang Y; Chen X; Liu J; Lu Y; Bu L; Xia L; Xiao W; Chen M; Nie Q; Liu Z
    Acta Ophthalmol; 2010 Sep; 88(6):652-9. PubMed ID: 20039857
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 60. IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation.
    Liu Y; Biarnés Costa M; Gerhardinger C
    PLoS One; 2012; 7(5):e36949. PubMed ID: 22615852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.