These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24349348)
1. Maternal investment in the swordtail fish Xiphophorus multilineatus: support for the differential allocation hypothesis. Rios-Cardenas O; Brewer J; Morris MR PLoS One; 2013; 8(12):e82723. PubMed ID: 24349348 [TBL] [Abstract][Full Text] [Related]
2. Maternal effects are long-lasting and influence female offspring's reproductive strategy in the swordtail fish Xiphophorus multilineatus. Murphy AD; Goedert D; Morris MR J Evol Biol; 2014 Aug; 27(8):1613-22. PubMed ID: 24823268 [TBL] [Abstract][Full Text] [Related]
3. Genotype and growth rate influence female mate preference in Xiphophorus multilineatus: Potential selection to optimize mortality-growth rate tradeoff. Fitschen-Brown M; Morris M PLoS One; 2023; 18(6):e0287843. PubMed ID: 37384757 [TBL] [Abstract][Full Text] [Related]
4. Feeding Rates in the Swordtail Fish Xiphophorus multilineatus: A Model System for Genetic Variation in Nutritional Programming. Morris MR; Friebertshauser RJ; Zupi M; Liotta MN; Dunn G; Kleinas N; Rios-Cardenas O Zebrafish; 2018 Oct; 15(5):484-491. PubMed ID: 30136916 [TBL] [Abstract][Full Text] [Related]
5. Alternative life histories in Xiphophorus multilineatus: evidence for different ages at sexual maturity and growth responses in the wild. Bono LM; Rios-Cardenas O; Morris MR J Fish Biol; 2011 May; 78(5):1311-22. PubMed ID: 21539544 [TBL] [Abstract][Full Text] [Related]
6. Strong reproductive skew among males in the multiply mated swordtail Xiphophorus multilineatus (Teleostei). Luo J; Sanetra M; Schartl M; Meyer A J Hered; 2005; 96(4):346-55. PubMed ID: 15743903 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome assembly and candidate genes involved in nutritional programming in the swordtail fish Lu Y; Klimovich CM; Robeson KZ; Boswell W; Ríos-Cardenas O; Walter RB; Morris MR PeerJ; 2017; 5():e3275. PubMed ID: 28480144 [TBL] [Abstract][Full Text] [Related]
8. Antagonistic selection on body size and sword length in a wild population of the swordtail fish, Liotta MN; Abbott JK; Morris MR; Rios-Cardenas O Ecol Evol; 2021 May; 11(9):3941-3955. PubMed ID: 33976786 [TBL] [Abstract][Full Text] [Related]
9. Reproductive investment when mate quality varies: differential allocation versus reproductive compensation. Harris WE; Uller T Philos Trans R Soc Lond B Biol Sci; 2009 Apr; 364(1520):1039-48. PubMed ID: 19324609 [TBL] [Abstract][Full Text] [Related]
10. Differential allocation in a gift-giving spider: males adjust their reproductive investment in response to female condition. Solano-Brenes D; Costa-Schmidt LE; Albo MJ; Machado G BMC Ecol Evol; 2021 Jul; 21(1):140. PubMed ID: 34238218 [TBL] [Abstract][Full Text] [Related]
11. Melanocortin 4 receptor signaling and puberty onset regulation in Xiphophorus swordtails. Liu R; Du K; Ormanns J; Adolfi MC; Schartl M Gen Comp Endocrinol; 2020 Sep; 295():113521. PubMed ID: 32470471 [TBL] [Abstract][Full Text] [Related]
12. Differential allocation in a lekking bird: females lay larger eggs and are more likely to have male chicks when they mate with less related males. Sardell RJ; DuVal EH Proc Biol Sci; 2014 Jan; 281(1774):20132386. PubMed ID: 24225457 [TBL] [Abstract][Full Text] [Related]
13. Strength of female mate preferences in temperature manipulation study supports the signal reliability hypothesis. Cobb NE; Mason SM; Tompkins K; Fitschen-Brown M; Rios-Cardenas O; Morris MR PLoS One; 2024; 19(6):e0303691. PubMed ID: 38843264 [TBL] [Abstract][Full Text] [Related]
14. Condition-dependent female preference for male genitalia length is based on male reproductive tactics. Hernandez-Jimenez A; Rios-Cardenas O Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29212729 [TBL] [Abstract][Full Text] [Related]
15. Sex-specific plasticity and genotype × sex interactions for age and size of maturity in the sheepshead swordtail, Xiphophorus birchmanni. Boulton K; Rosenthal GG; Grimmer AJ; Walling CA; Wilson AJ J Evol Biol; 2016 Mar; 29(3):645-56. PubMed ID: 26688295 [TBL] [Abstract][Full Text] [Related]
16. Paternal and maternal effects in a mosquito: A bridge for life history transition. Yanchula KZ; Alto BW J Insect Physiol; 2021; 131():104243. PubMed ID: 33845092 [TBL] [Abstract][Full Text] [Related]
17. Genetic variation in maternal investment patterns in platyfish Xiphophorus maculatus. Basolo AL; Wagner WE Zebrafish; 2006; 3(3):339-45. PubMed ID: 18377214 [TBL] [Abstract][Full Text] [Related]
18. What happens to offspring when parents are inbred, old or had a poor start in life? Evidence for sex-specific parental effects. Vega-Trejo R; Kruuk LEB; Jennions MD; Head ML J Evol Biol; 2018 Aug; 31(8):1138-1151. PubMed ID: 29791044 [TBL] [Abstract][Full Text] [Related]
19. Multiple mating and reproductive skew in parental and introgressed females of the live-bearing fish Xiphophorus birchmanni. Paczolt KA; Passow CN; Delclos PJ; Kindsvater HK; Jones AG; Rosenthal GG J Hered; 2015; 106(1):57-66. PubMed ID: 25433083 [TBL] [Abstract][Full Text] [Related]
20. Females increase reproductive investment when mated to less sexually attractive males in a serially monogamous fish. Lin T; Liu X; Li S; Zhang D; Shen F; Jiang K Sci Rep; 2024 Aug; 14(1):19020. PubMed ID: 39152306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]