These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 24349513)

  • 21. Identification of novel soybean microRNAs involved in abiotic and biotic stresses.
    Kulcheski FR; de Oliveira LF; Molina LG; Almerão MP; Rodrigues FA; Marcolino J; Barbosa JF; Stolf-Moreira R; Nepomuceno AL; Marcelino-Guimarães FC; Abdelnoor RV; Nascimento LC; Carazzolle MF; Pereira GA; Margis R
    BMC Genomics; 2011 Jun; 12():307. PubMed ID: 21663675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential gene expression in response to water deficit in leaf and root tissues of soybean genotypes with contrasting tolerance profiles.
    Reis RR; Mertz-Henning LM; Marcolino-Gomes J; Rodrigues FA; Rockenbach-Marin S; Fuganti-Pagliarini R; Koltun A; Gonçalves LSA; Nepomuceno AL
    Genet Mol Biol; 2020; 43(2):e20180290. PubMed ID: 32478791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.
    Yadav A; Khan Y; Prasad M
    Planta; 2016 Mar; 243(3):749-66. PubMed ID: 26676987
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response.
    Feng RJ; Ren MY; Lu LF; Peng M; Guan X; Zhou DB; Zhang MY; Qi DF; Li K; Tang W; Yun TY; Chen YF; Wang F; Zhang D; Shen Q; Liang P; Zhang YD; Xie JH
    Sci Rep; 2019 Sep; 9(1):12661. PubMed ID: 31477771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New insights in the sugarcane transcriptome responding to drought stress as revealed by superSAGE.
    Kido ÉA; Ferreira Neto JR; Silva RL; Pandolfi V; Guimarães AC; Veiga DT; Chabregas SM; Crovella S; Benko-Iseppon AM
    ScientificWorldJournal; 2012; 2012():821062. PubMed ID: 22629208
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptomic network analyses of leaf dehydration responses identify highly connected ABA and ethylene signaling hubs in three grapevine species differing in drought tolerance.
    Hopper DW; Ghan R; Schlauch KA; Cramer GR
    BMC Plant Biol; 2016 May; 16(1):118. PubMed ID: 27215785
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The differential expression of soybean [Glycine max (L.) Merrill] WRKY genes in response to water deficit.
    Dias LP; de Oliveira-Busatto LA; Bodanese-Zanettini MH
    Plant Physiol Biochem; 2016 Oct; 107():288-300. PubMed ID: 27343875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration.
    Matos MKDS; Benko-Iseppon AM; Bezerra-Neto JP; Ferreira-Neto JRC; Wang Y; Liu H; Pandolfi V; Amorim LLB; Willadino L; do Vale Amorim TC; Kido EA; Vianello RP; Timko MP; Brasileiro-Vidal AC
    Gene; 2022 May; 823():146377. PubMed ID: 35231571
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean.
    Wang Y; Jiang L; Chen J; Tao L; An Y; Cai H; Guo C
    PLoS One; 2018; 13(2):e0192382. PubMed ID: 29466387
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and expression analysis of the Glycine max CYP707A gene family in response to drought and salt stresses.
    Zheng Y; Huang Y; Xian W; Wang J; Liao H
    Ann Bot; 2012 Aug; 110(3):743-56. PubMed ID: 22751653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress.
    Belamkar V; Weeks NT; Bharti AK; Farmer AD; Graham MA; Cannon SB
    BMC Genomics; 2014 Nov; 15():950. PubMed ID: 25362847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (
    Bhaskarla V; Zinta G; Ford R; Jain M; Varshney RK; Mantri N
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32150870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes.
    Tripathi P; Rabara RC; Reese RN; Miller MA; Rohila JS; Subramanian S; Shen QJ; Morandi D; Bücking H; Shulaev V; Rushton PJ
    BMC Genomics; 2016 Feb; 17():102. PubMed ID: 26861168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline.
    Hernandez-Garcia CM; Bouchard RA; Rushton PJ; Jones ML; Chen X; Timko MP; Finer JJ
    BMC Plant Biol; 2010 Nov; 10():237. PubMed ID: 21050446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Transcriptome Analysis of Two Contrasting Soybean Varieties in Response to Aluminum Toxicity.
    Zhao L; Cui J; Cai Y; Yang S; Liu J; Wang W; Gai J; Hu Z; Li Y
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560405
    [No Abstract]   [Full Text] [Related]  

  • 36. Daytime soybean transcriptome fluctuations during water deficit stress.
    Rodrigues FA; Fuganti-Pagliarini R; Marcolino-Gomes J; Nakayama TJ; Molinari HB; Lobo FP; Harmon FG; Nepomuceno AL
    BMC Genomics; 2015 Jul; 16(1):505. PubMed ID: 26149272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The WRKY Transcription Factor GmWRKY12 Confers Drought and Salt Tolerance in Soybean.
    Shi WY; Du YT; Ma J; Min DH; Jin LG; Chen J; Chen M; Zhou YB; Ma YZ; Xu ZS; Zhang XH
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels.
    Le DT; Nishiyama R; Watanabe Y; Vankova R; Tanaka M; Seki M; Ham le H; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    PLoS One; 2012; 7(8):e42411. PubMed ID: 22900018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves.
    Moran Lauter AN; Peiffer GA; Yin T; Whitham SA; Cook D; Shoemaker RC; Graham MA
    BMC Genomics; 2014 Aug; 15():702. PubMed ID: 25149281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.
    Le DT; Aldrich DL; Valliyodan B; Watanabe Y; Ha CV; Nishiyama R; Guttikonda SK; Quach TN; Gutierrez-Gonzalez JJ; Tran LS; Nguyen HT
    PLoS One; 2012; 7(9):e46487. PubMed ID: 23029532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.