These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24349542)

  • 21. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets.
    Nagel AC; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Yang JA; Han S; Peddecord KM; Lindsay S; Sawyer MH
    J Med Internet Res; 2013 Oct; 15(10):e237. PubMed ID: 24158773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time.
    McIver DJ; Brownstein JS
    PLoS Comput Biol; 2014 Apr; 10(4):e1003581. PubMed ID: 24743682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forecasting the 2013-2014 influenza season using Wikipedia.
    Hickmann KS; Fairchild G; Priedhorsky R; Generous N; Hyman JM; Deshpande A; Del Valle SY
    PLoS Comput Biol; 2015 May; 11(5):e1004239. PubMed ID: 25974758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic.
    Signorini A; Segre AM; Polgreen PM
    PLoS One; 2011 May; 6(5):e19467. PubMed ID: 21573238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of geographical spread and temporal accumulation of the 2009 influenza A (H1N1) epidemic in Japan Based on National Surveillance Data.
    Ohta A; Hashimoto S; Murakami Y; Kawado M; Taniguchi K; Tada Y; Shigematsu M; Nagai M
    Jpn J Infect Dis; 2014; 67(5):368-73. PubMed ID: 25241687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing Social media and Google to detect and predict severe epidemics.
    Samaras L; García-Barriocanal E; Sicilia MA
    Sci Rep; 2020 Mar; 10(1):4747. PubMed ID: 32179780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Keywords From Twitter and Web Blog Posts to Detect Influenza Epidemics in Korea.
    Woo H; Sung Cho H; Shim E; Lee JK; Lee K; Song G; Cho Y
    Disaster Med Public Health Prep; 2018 Jun; 12(3):352-359. PubMed ID: 28756796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A statistical tool for comparing seasonal ILI surveillance data.
    Ferland R; Froda S
    Sci Rep; 2019 Feb; 9(1):1422. PubMed ID: 30723245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google Flu Trends.
    Ortiz JR; Zhou H; Shay DK; Neuzil KM; Fowlkes AL; Goss CH
    PLoS One; 2011 Apr; 6(4):e18687. PubMed ID: 21556151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003-2015 data.
    Michiels B; Nguyen VK; Coenen S; Ryckebosch P; Bossuyt N; Hens N
    BMC Infect Dis; 2017 Jan; 17(1):84. PubMed ID: 28100186
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of hangeul twitter to track and predict human influenza infection.
    Kim EK; Seok JH; Oh JS; Lee HW; Kim KH
    PLoS One; 2013; 8(7):e69305. PubMed ID: 23894447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method.
    Goldstein E; Cobey S; Takahashi S; Miller JC; Lipsitch M
    PLoS Med; 2011 Jul; 8(7):e1001051. PubMed ID: 21750666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surveillance of influenza vaccination coverage--United States, 2007-08 through 2011-12 influenza seasons.
    Lu PJ; Santibanez TA; Williams WW; Zhang J; Ding H; Bryan L; O'Halloran A; Greby SM; Bridges CB; Graitcer SB; Kennedy ED; Lindley MC; Ahluwalia IB; LaVail K; Pabst LJ; Harris L; Vogt T; Town M; Singleton JA;
    MMWR Surveill Summ; 2013 Oct; 62(4):1-28. PubMed ID: 24157710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using networks to combine "big data" and traditional surveillance to improve influenza predictions.
    Davidson MW; Haim DA; Radin JM
    Sci Rep; 2015 Jan; 5():8154. PubMed ID: 25634021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The moving epidemic method applied to influenza surveillance in Guangdong, China.
    Kang M; Tan X; Ye M; Liao Y; Song T; Tang S
    Int J Infect Dis; 2021 Mar; 104():594-600. PubMed ID: 33515775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effective detection of the 2009 H1N1 influenza pandemic in U.S. Veterans Affairs medical centers using a national electronic biosurveillance system.
    Schirmer P; Lucero C; Oda G; Lopez J; Holodniy M
    PLoS One; 2010 Mar; 5(3):e9533. PubMed ID: 20209055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Evaluation of real-time surveillance of influenza incidence in Kawasaki City by comparison using the National Epidemiological Surveillance of Infectious Diseases].
    Nakamura T; Maruyama A; Misaki T; Okabe N; Shinmei K; Hashizume M; Murakami Y; Nishiwaki Y
    Nihon Koshu Eisei Zasshi; 2018; 65(11):666-676. PubMed ID: 30518705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. FluView and FluNet: Tools for Influenza Activity and Surveillance.
    Charbonneau DH; James LN
    Med Ref Serv Q; 2019; 38(4):358-368. PubMed ID: 31687905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.