BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24349554)

  • 21. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.
    Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative genomics provides evidence for an ancient genome duplication event in fish.
    Taylor JS; Van de Peer Y; Braasch I; Meyer A
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1661-79. PubMed ID: 11604130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.
    Davesne D; Friedman M; Schmitt AD; Fernandez V; Carnevale G; Ahlberg PE; Sanchez S; Benson RBJ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Evolution of Duplicated Ddx3 Genes in Teleosts: Insights from Japanese Flounder, Paralichthys olivaceus.
    Wang Z; Liu W; Song H; Wang H; Liu J; Zhao H; Du X; Zhang Q
    G3 (Bethesda); 2015 Jun; 5(8):1765-73. PubMed ID: 26109358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Zebrafish hox clusters and vertebrate genome evolution.
    Amores A; Force A; Yan YL; Joly L; Amemiya C; Fritz A; Ho RK; Langeland J; Prince V; Wang YL; Westerfield M; Ekker M; Postlethwait JH
    Science; 1998 Nov; 282(5394):1711-4. PubMed ID: 9831563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fish specific duplication of Dmrt2: characterization of zebrafish Dmrt2b.
    Zhou X; Li Q; Lu H; Chen H; Guo Y; Cheng H; Zhou R
    Biochimie; 2008 Jun; 90(6):878-87. PubMed ID: 18358846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny.
    Raincrow JD; Dewar K; Stocsits C; Prohaska SJ; Amemiya CT; Stadler PF; Chiu CH
    J Exp Zool B Mol Dev Evol; 2011 Sep; 316(6):451-64. PubMed ID: 21688387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes.
    Santini F; Harmon LJ; Carnevale G; Alfaro ME
    BMC Evol Biol; 2009 Aug; 9():194. PubMed ID: 19664233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular evolution and functional divergence of the cytochrome P450 3 (CYP3) Family in Actinopterygii (ray-finned fish).
    Yan J; Cai Z
    PLoS One; 2010 Dec; 5(12):e14276. PubMed ID: 21170327
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systematic variation in the pattern of gene paralog retention between the teleost superorders Ostariophysi and Acanthopterygii.
    Garcia de la Serrana D; Mareco EA; Johnston IA
    Genome Biol Evol; 2014 Apr; 6(4):981-7. PubMed ID: 24732281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence analyses of the distal-less homeobox gene family in East African cichlid fishes reveal signatures of positive selection.
    Diepeveen ET; Kim FD; Salzburger W
    BMC Evol Biol; 2013 Jul; 13():153. PubMed ID: 23865956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapidly evolving fish genomes and teleost diversity.
    Ravi V; Venkatesh B
    Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary significance and diversification of the phosphoglucose isomerase genes in vertebrates.
    Tine M
    BMC Res Notes; 2015 Dec; 8():799. PubMed ID: 26682538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand.
    Cardoso JC; FĂ©lix RC; Trindade M; Power DM
    Gen Comp Endocrinol; 2014 Dec; 209():82-92. PubMed ID: 24906176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rhodopsin gene evolution in early teleost fishes.
    Chen JN; Samadi S; Chen WJ
    PLoS One; 2018; 13(11):e0206918. PubMed ID: 30395593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.