These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24349642)

  • 1. Protein-Ligand Interactions: Thermodynamic Effects Associated with Increasing the Length of an Alkyl Chain.
    Myslinski JM; Clements JH; Delorbe JE; Martin SF
    ACS Med Chem Lett; 2013 Nov; 4(11):1048-53. PubMed ID: 24349642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some thermodynamic effects of varying nonpolar surfaces in protein-ligand interactions.
    Cramer DL; Cheng B; Tian J; Clements JH; Wypych RM; Martin SF
    Eur J Med Chem; 2020 Dec; 208():112771. PubMed ID: 32916312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-ligand interactions: thermodynamic effects associated with increasing nonpolar surface area.
    Myslinski JM; DeLorbe JE; Clements JH; Martin SF
    J Am Chem Soc; 2011 Nov; 133(46):18518-21. PubMed ID: 22007755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal carboxyl and tetrazole-containing amides as adjuvants to Grb2 SH2 domain ligand binding.
    Burke TR; Yao ZJ; Gao Y; Wu JX; Zhu X; Luo JH; Guo R; Yang D
    Bioorg Med Chem; 2001 Jun; 9(6):1439-45. PubMed ID: 11408162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and structural analysis of phosphotyrosine polypeptide binding to Grb2-SH2.
    McNemar C; Snow ME; Windsor WT; Prongay A; Mui P; Zhang R; Durkin J; Le HV; Weber PC
    Biochemistry; 1997 Aug; 36(33):10006-14. PubMed ID: 9254595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-ligand interactions: probing the energetics of a putative cation-π interaction.
    Myslinski JM; Clements JH; Martin SF
    Bioorg Med Chem Lett; 2014 Jul; 24(14):3164-7. PubMed ID: 24856058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization.
    DeLorbe JE; Clements JH; Teresk MG; Benfield AP; Plake HR; Millspaugh LE; Martin SF
    J Am Chem Soc; 2009 Nov; 131(46):16758-70. PubMed ID: 19886660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of binding between mouse major urinary protein-I and the pheromone 2-sec-butyl-4,5-dihydrothiazole.
    Sharrow SD; Novotny MV; Stone MJ
    Biochemistry; 2003 May; 42(20):6302-9. PubMed ID: 12755635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based design and synthesis of high affinity tripeptide ligands of the Grb2-SH2 domain.
    Furet P; Gay B; Caravatti G; García-Echeverría C; Rahuel J; Schoepfer J; Fretz H
    J Med Chem; 1998 Aug; 41(18):3442-9. PubMed ID: 9719597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium binding of alkyl isocyanides to human hemoglobin.
    Reisberg PI; Olson JS
    J Biol Chem; 1980 May; 255(9):4144-30. PubMed ID: 7372671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrocyclization in the design of Grb2 SH2 domain-binding ligands exhibiting high potency in whole-cell systems.
    Wei CQ; Gao Y; Lee K; Guo R; Li B; Zhang M; Yang D; Burke TR
    J Med Chem; 2003 Jan; 46(2):244-54. PubMed ID: 12519063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and cooperative mechanisms of ligand binding to hemoglobin.
    Reisberg PI; Olson JS
    J Biol Chem; 1980 May; 255(9):4159-69. PubMed ID: 7372673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-terminal parathyroid hormone fragment analogs containing alpha,alpha-di-alkyl amino acids at positions 1 and 3.
    Shimizu N; Dean T; Khatri A; Gardella TJ
    J Bone Miner Res; 2004 Dec; 19(12):2078-86. PubMed ID: 15537452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional preference of the constituent amino acid residues in a phage-library-based nonphosphorylated inhibitor of the Grb2-SH2 domain.
    Lung FD; Long YQ; Roller PP; King CR; Varady J; Wu XW; Wang S
    J Pept Res; 2001 Jun; 57(6):447-54. PubMed ID: 11437948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small peptides containing phosphotyrosine and adjacent alphaMe-phosphotyrosine or its mimetics as highly potent inhibitors of Grb2 SH2 domain.
    Liu WQ; Vidal M; Gresh N; Roques BP; Garbay C
    J Med Chem; 1999 Sep; 42(18):3737-41. PubMed ID: 10479306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures and redox reactivities of copper complexes of (2-pyridyl)alkylamine ligands. Effects of the alkyl linker chain length.
    Osako T; Ueno Y; Tachi Y; Itoh S
    Inorg Chem; 2003 Dec; 42(24):8087-97. PubMed ID: 14632530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for a non-phosphorus-containing cyclic peptide binding to Grb2-SH2 domain with high affinity.
    Li P; Zhang M; Peach ML; Zhang X; Liu H; Nicklaus M; Yang D; Roller PP
    Biochem Biophys Res Commun; 2003 Aug; 307(4):1038-44. PubMed ID: 12878216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent inhibition of Grb2 SH2 domain binding by non-phosphate-containing ligands.
    Yao ZJ; King CR; Cao T; Kelley J; Milne GW; Voigt JH; Burke TR
    J Med Chem; 1999 Jan; 42(1):25-35. PubMed ID: 9888830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The properties of [omega(3-acetylpyridinio)-n-alkyl]adenosine pyrophosphates, structural analogs of the coenzyme NAD (author's transl)].
    Jeck R
    Z Naturforsch C Biosci; 1977; 32(7-8):550-6. PubMed ID: 198987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.