BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 24350244)

  • 1. Robotic technologies and rehabilitation: new tools for stroke patients' therapy.
    Poli P; Morone G; Rosati G; Masiero S
    Biomed Res Int; 2013; 2013():153872. PubMed ID: 24350244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke.
    Mehrholz J; Hädrich A; Platz T; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2012 Jun; (6):CD006876. PubMed ID: 22696362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke.
    Mehrholz J; Platz T; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2008 Oct; (4):CD006876. PubMed ID: 18843735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
    Masiero S; Armani M; Ferlini G; Rosati G; Rossi A
    Neurorehabil Neural Repair; 2014 May; 28(4):377-86. PubMed ID: 24316679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The value of robotic systems in stroke rehabilitation.
    Masiero S; Poli P; Rosati G; Zanotto D; Iosa M; Paolucci S; Morone G
    Expert Rev Med Devices; 2014 Mar; 11(2):187-98. PubMed ID: 24479445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke.
    Veerbeek JM; Langbroek-Amersfoort AC; van Wegen EE; Meskers CG; Kwakkel G
    Neurorehabil Neural Repair; 2017 Feb; 31(2):107-121. PubMed ID: 27597165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke.
    Mehrholz J; Pollock A; Pohl M; Kugler J; Elsner B
    J Neuroeng Rehabil; 2020 Jun; 17(1):83. PubMed ID: 32605587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study.
    Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C
    Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined transcranial Direct Current Stimulation and robot-assisted arm training in patients with stroke: a systematic review.
    Fonte C; Varalta V; Rocco A; Munari D; Filippetti M; Evangelista E; Modenese A; Smania N; Picelli A
    Restor Neurol Neurosci; 2021; 39(6):435-446. PubMed ID: 34974446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic review of guidelines to identify recommendations for upper limb robotic rehabilitation after stroke.
    Morone G; Palomba A; Martino Cinnera A; Agostini M; Aprile I; Arienti C; Paci M; Casanova E; Marino D; LA Rosa G; Bressi F; Sterzi S; Gandolfi M; Giansanti D; Perrero L; Battistini A; Miccinilli S; Filoni S; Sicari M; Petrozzino S; Solaro CM; Gargano S; Benanti P; Boldrini P; Bonaiuti D; Castelli E; Draicchio F; Falabella V; Galeri S; Gimigliano F; Grigioni M; Mazzoleni S; Mazzon S; Molteni F; Petrarca M; Picelli A; Posteraro F; Senatore M; Turchetti G; Straudi S;
    Eur J Phys Rehabil Med; 2021 Apr; 57(2):238-245. PubMed ID: 33491943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robot-Assisted Reach Training With an Active Assistant Protocol for Long-Term Upper Extremity Impairment Poststroke: A Randomized Controlled Trial.
    Cho KH; Song WK
    Arch Phys Med Rehabil; 2019 Feb; 100(2):213-219. PubMed ID: 30686326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System.
    Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J
    Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life: A randomized clinical trial.
    Chinembiri B; Ming Z; Kai S; Xiu Fang Z; Wei C
    Top Stroke Rehabil; 2021 Jan; 28(1):1-18. PubMed ID: 32434454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromechanical-assisted training for walking after stroke.
    Mehrholz J; Werner C; Kugler J; Pohl M
    Cochrane Database Syst Rev; 2007 Oct; (4):CD006185. PubMed ID: 17943893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.