These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24350265)

  • 1. A biomechanical research of growth control of spine by shape memory alloy staples.
    Zhang W; Zhang Y; Zheng G; Zhang R; Wang Y
    Biomed Res Int; 2013; 2013():384894. PubMed ID: 24350265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental study on controlling unilateral spine growth by shape memory alloy staple].
    Zhang YG; Zhang W; Zheng GQ; Zhang RY; Zhang HZ; Wang Y
    Zhonghua Wai Ke Za Zhi; 2007 Apr; 45(8):537-9. PubMed ID: 17686325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research of the peak force of pullout about different thoracic hemi-epiphyseal compression staples in animal].
    Zhang W; Zhang YG; Wang Y; Wang AY
    Zhonghua Wai Ke Za Zhi; 2007 Jul; 45(14):976-8. PubMed ID: 17961385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Animal experiment of memory alloy staples to control the sagittal growth of vertebrates].
    Bai L; Zhang W; Zheng GQ; Zhang YG
    Zhonghua Wai Ke Za Zhi; 2011 Feb; 49(2):145-9. PubMed ID: 21426830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk of Implant Loosening After Cyclic Loading of Fusionless Growth Modulation Techniques: Nitinol Staples Versus Flexible Tether.
    Yaszay B; Doan JD; Parvaresh KC; Farnsworth CL
    Spine (Phila Pa 1976); 2017 Apr; 42(7):443-449. PubMed ID: 27454539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2004 Sep; 29(18):1980-9. PubMed ID: 15371698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis.
    Driscoll M; Aubin CE; Moreau A; Parent S
    Med Biol Eng Comput; 2011 Dec; 49(12):1437-45. PubMed ID: 21755319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis.
    Braun JT; Hines JL; Akyuz E; Vallera C; Ogilvie JW
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1776-82. PubMed ID: 16845350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis.
    Braun JT; Akyuz E; Ogilvie JW; Bachus KN
    J Bone Joint Surg Am; 2005 Sep; 87(9):2038-51. PubMed ID: 16140820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D; Meng C; Zheng G; Zhang W; Zhang R; Bai L; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan; 23(1):72-5. PubMed ID: 19192884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical investigation of vertebral staples for fusionless scoliosis correction.
    Shillington MP; Labrom RD; Askin GN; Adam CJ
    Clin Biomech (Bristol, Avon); 2011 Jun; 26(5):445-51. PubMed ID: 21316129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model.
    Hunt KJ; Braun JT; Christensen BA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):371-7. PubMed ID: 20110838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of vertebral body stapling on spine biomechanics and structure using a bovine model.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Clin Biomech (Bristol, Avon); 2020 Apr; 74():73-78. PubMed ID: 32145672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical Properties of Nitinol Staples: Effects of Troughing, Effective Leg Length, and 2-Staple Constructs.
    McKnight RR; Lee SK; Gaston RG
    J Hand Surg Am; 2019 Jun; 44(6):520.e1-520.e9. PubMed ID: 30344022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model.
    Braun JT; Hoffman M; Akyuz E; Ogilvie JW; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2006 May; 31(12):1314-20. PubMed ID: 16721292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture Fixation Using Shape-Memory (Ninitol) Staples.
    Wu JC; Mills A; Grant KD; Wiater PJ
    Orthop Clin North Am; 2019 Jul; 50(3):367-374. PubMed ID: 31084839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetrical flexible tethering of spine growth in an immature bovine model.
    Newton PO; Fricka KB; Lee SS; Farnsworth CL; Cox TG; Mahar AT
    Spine (Phila Pa 1976); 2002 Apr; 27(7):689-93. PubMed ID: 11923660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design and biomechanical analysis of nickel-titanium open shape memory alloy artificial vertebral body].
    Liu H; Lian K; Liao L; Zhai W; Ding Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Oct; 24(10):1180-4. PubMed ID: 21046802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.