These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24350330)

  • 1. Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis.
    Sun Q; Madan B; Tsai SL; DeLisa MP; Chen W
    Chem Commun (Camb); 2014 Feb; 50(12):1423-5. PubMed ID: 24350330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.
    Sun Q; Chen W
    Chem Commun (Camb); 2016 May; 52(40):6701-4. PubMed ID: 27117678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation Between Size and Activity Enhancement of Recombinantly Assembled Cellulosomes.
    Chen L; Ge X
    Appl Biochem Biotechnol; 2018 Dec; 186(4):937-948. PubMed ID: 29797297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling.
    You C; Zhang YH
    ACS Synth Biol; 2013 Feb; 2(2):102-10. PubMed ID: 23656373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases.
    Lu L; Zhang L; Yuan L; Zhu T; Chen W; Wang G; Wang Q
    Chembiochem; 2019 Jun; 20(11):1394-1399. PubMed ID: 30697892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometrically Controlled Immobilization of Multiple Enzymes on Magnetic Nanoparticles by the Magnetosome Display System for Efficient Cellulose Hydrolysis.
    Honda T; Tanaka T; Yoshino T
    Biomacromolecules; 2015 Dec; 16(12):3863-8. PubMed ID: 26571204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex.
    Eklund M; Sandström K; Teeri TT; Nygren PA
    J Biotechnol; 2004 Apr; 109(3):277-86. PubMed ID: 15066765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional display of complex cellulosomes on the yeast surface via adaptive assembly.
    Tsai SL; DaSilva NA; Chen W
    ACS Synth Biol; 2013 Jan; 2(1):14-21. PubMed ID: 23656322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rosettazyme: a synthetic cellulosome.
    Mitsuzawa S; Kagawa H; Li Y; Chan SL; Paavola CD; Trent JD
    J Biotechnol; 2009 Aug; 143(2):139-44. PubMed ID: 19559062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aligning an endoglucanase Cel5A from Thermobifida fusca on a DNA scaffold: potent design of an artificial cellulosome.
    Mori Y; Ozasa S; Kitaoka M; Noda S; Tanaka T; Ichinose H; Kamiya N
    Chem Commun (Camb); 2013 Aug; 49(62):6971-3. PubMed ID: 23764949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity.
    Hildén L; Johansson G
    Biotechnol Lett; 2004 Nov; 26(22):1683-93. PubMed ID: 15604820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of cellulolytic enzyme activity by clustering cellulose binding domains on nanoscaffolds.
    Kim DM; Umetsu M; Takai K; Matsuyama T; Ishida N; Takahashi H; Asano R; Kumagai I
    Small; 2011 Mar; 7(5):656-64. PubMed ID: 21290602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the distinct binding modes of expansin and carbohydrate-binding module proteins on crystalline and nanofibrous cellulose: implications for cellulose degradation by designer cellulosomes.
    Orłowski A; Artzi L; Cazade PA; Gunnoo M; Bayer EA; Thompson D
    Phys Chem Chem Phys; 2018 Mar; 20(12):8278-8293. PubMed ID: 29528340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis.
    Tsai SL; Park M; Chen W
    Biotechnol J; 2013 Feb; 8(2):257-61. PubMed ID: 22847905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designer cellulosomes for enhanced hydrolysis of cellulosic substrates.
    Vazana Y; Moraïs S; Barak Y; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():429-52. PubMed ID: 22608740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes.
    Bae J; Morisaka H; Kuroda K; Ueda M
    J Mol Microbiol Biotechnol; 2013; 23(4-5):370-8. PubMed ID: 23920499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between family 3 carbohydrate binding modules (CBMs) and cellulosomal linker peptides.
    Yaniv O; Frolow F; Levy-Assraf M; Lamed R; Bayer EA
    Methods Enzymol; 2012; 510():247-59. PubMed ID: 22608730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization.
    Wang Y; Leng L; Islam MK; Liu F; Lin CSK; Leu SY
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31288425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial scaffolds for enhanced biocatalysis.
    Sun Q; Tsai SL; Chen W
    Methods Enzymol; 2019; 617():363-383. PubMed ID: 30784409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.