These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24350424)

  • 1. Special issue: Sustainable technologies: bioenergy and biofuel from biowaste and biomass.
    Tiquia-Arashiro SM; Mormile M
    Environ Technol; 2013; 34(13-16):1637-8. PubMed ID: 24350424
    [No Abstract]   [Full Text] [Related]  

  • 2. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae.
    Ndimba BK; Ndimba RJ; Johnson TS; Waditee-Sirisattha R; Baba M; Sirisattha S; Shiraiwa Y; Agrawal GK; Rakwal R
    J Proteomics; 2013 Nov; 93():234-44. PubMed ID: 23792822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current development of biorefinery in China.
    Tan T; Shang F; Zhang X
    Biotechnol Adv; 2010; 28(5):543-55. PubMed ID: 20493245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of sustainable algal biofuel production using wastewater resources.
    Pittman JK; Dean AP; Osundeko O
    Bioresour Technol; 2011 Jan; 102(1):17-25. PubMed ID: 20594826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Preface for special issue on bioenergy (2015)].
    Liu D; Li C
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1411-4. PubMed ID: 26964331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.
    Steubing B; Zah R; Ludwig C
    Environ Sci Technol; 2012 Jan; 46(1):164-71. PubMed ID: 22091634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.
    Logan BE; Rabaey K
    Science; 2012 Aug; 337(6095):686-90. PubMed ID: 22879507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: potential applications in agriculture and forestry?
    Bonanno G; Cirelli GL; Toscano A; Lo Giudice R; Pavone P
    Sci Total Environ; 2013 May; 452-453():349-54. PubMed ID: 23534998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production.
    Hoffmann J; Rudra S; Toor SS; Holm-Nielsen JB; Rosendahl LA
    Bioresour Technol; 2013 Feb; 129():402-10. PubMed ID: 23262018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U.S. federal agency models offer different visions for achieving Renewable Fuel Standard (RFS2) biofuel volumes.
    Keeler BL; Krohn BJ; Nickerson TA; Hill JD
    Environ Sci Technol; 2013 Sep; 47(18):10095-101. PubMed ID: 24010884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Household anaerobic digester for bioenergy production in developing countries: opportunities and challenges.
    Surendra KC; Takara D; Jasinski J; Khanal SK
    Environ Technol; 2013; 34(13-16):1671-89. PubMed ID: 24350427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landfills as a biorefinery to produce biomass and capture biogas.
    Bolan NS; Thangarajan R; Seshadri B; Jena U; Das KC; Wang H; Naidu R
    Bioresour Technol; 2013 May; 135():578-87. PubMed ID: 23069612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in membrane technologies for biorefining and bioenergy production.
    He Y; Bagley DM; Leung KT; Liss SN; Liao BQ
    Biotechnol Adv; 2012; 30(4):817-58. PubMed ID: 22306168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SCCER BIOSWEET - The Swiss Competence Center for Energy Research on Bioenergy.
    Kröcher O
    Chimia (Aarau); 2015; 69(10):569. PubMed ID: 26598399
    [No Abstract]   [Full Text] [Related]  

  • 16. An Indian scenario on renewable and sustainable energy sources with emphasis on algae.
    Hemaiswarya S; Raja R; Carvalho IS; Ravikumar R; Zambare V; Barh D
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1125-35. PubMed ID: 23070650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of energy recovery from poultry litter and municipal solid waste by thermochemical conversion method in India.
    Kirubakaran V; Sivaramakrishnan V; Premalatha M; Subramanian P
    J Environ Sci Eng; 2005 Oct; 47(4):266-75. PubMed ID: 17051912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of biomass in a circular economy.
    Sherwood J
    Bioresour Technol; 2020 Mar; 300():122755. PubMed ID: 31956060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for hydrogen and methane production from biomass residues in Canada.
    Levin DB; Zhu H; Beland M; Cicek N; Holbein BE
    Bioresour Technol; 2007 Feb; 98(3):654-60. PubMed ID: 16580198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Bioenergy from Biofuel Residues and Waste.
    Sheehan NP; Plante L; Martinez E; Murray K; Bier P; Ouellette C
    Water Environ Res; 2018 Oct; 90(10):1073-1090. PubMed ID: 30126479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.