These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 24350443)
1. Screening for novel bacteria from the bioenergy feedstock switchgrass (Panicum virgatum L.). Plecha S; Hall D; Tiquia-Arashiro SM Environ Technol; 2013; 34(13-16):1895-904. PubMed ID: 24350443 [TBL] [Abstract][Full Text] [Related]
3. Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Gladden JM; Allgaier M; Miller CS; Hazen TC; VanderGheynst JS; Hugenholtz P; Simmons BA; Singer SW Appl Environ Microbiol; 2011 Aug; 77(16):5804-12. PubMed ID: 21724886 [TBL] [Abstract][Full Text] [Related]
4. Community dynamics of cellulose-adapted thermophilic bacterial consortia. Eichorst SA; Varanasi P; Stavila V; Zemla M; Auer M; Singh S; Simmons BA; Singer SW Environ Microbiol; 2013 Sep; 15(9):2573-87. PubMed ID: 23763762 [TBL] [Abstract][Full Text] [Related]
5. Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. Rastogi G; Muppidi GL; Gurram RN; Adhikari A; Bischoff KM; Hughes SR; Apel WA; Bang SS; Dixon DJ; Sani RK J Ind Microbiol Biotechnol; 2009 Apr; 36(4):585-98. PubMed ID: 19189143 [TBL] [Abstract][Full Text] [Related]
6. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park. Vishnivetskaya TA; Hamilton-Brehm SD; Podar M; Mosher JJ; Palumbo AV; Phelps TJ; Keller M; Elkins JG Microb Ecol; 2015 Feb; 69(2):333-45. PubMed ID: 25319238 [TBL] [Abstract][Full Text] [Related]
7. Deconstruction of plant biomass by a Cellulomonas strain isolated from an ultra-basic (lignin-stripping) spring. Kamennaya NA; Gray J; Ito S; Kainuma M; Nguyen MV; Khilyas IV; Birarda G; Bernie F; Hunt M; Vasadia D; Lin J; Holman HY; Torok T; Cohen MF Arch Microbiol; 2020 Jul; 202(5):1077-1084. PubMed ID: 32030461 [TBL] [Abstract][Full Text] [Related]
8. Characterization of three plant biomass-degrading microbial consortia by metagenomics- and metasecretomics-based approaches. Jiménez DJ; de Lima Brossi MJ; Schückel J; Kračun SK; Willats WG; van Elsas JD Appl Microbiol Biotechnol; 2016 Dec; 100(24):10463-10477. PubMed ID: 27418359 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Gagne-Bourgue F; Aliferis KA; Seguin P; Rani M; Samson R; Jabaji S J Appl Microbiol; 2013 Mar; 114(3):836-53. PubMed ID: 23190162 [TBL] [Abstract][Full Text] [Related]
10. Electron beam pretreatment of switchgrass to enhance enzymatic hydrolysis to produce sugars for biofuels. Sundar S; Bergey NS; Salamanca-Cardona L; Stipanovic A; Driscoll M Carbohydr Polym; 2014 Jan; 100():195-201. PubMed ID: 24188854 [TBL] [Abstract][Full Text] [Related]
11. Conversion of ammonia-pretreated switchgrass to biofuel precursors by bacterial-fungal consortia under solid-state and submerged-state cultivation. Jain A; Pelle HS; Baughman WH; Henson JM J Appl Microbiol; 2017 Apr; 122(4):953-963. PubMed ID: 27626760 [TBL] [Abstract][Full Text] [Related]
12. Hydrolytic potential of Trichoderma sp. strains evaluated by microplate-based screening followed by switchgrass saccharification. Cianchetta S; Galletti S; Burzi PL; Cerato C Enzyme Microb Technol; 2012 May; 50(6-7):304-10. PubMed ID: 22500897 [TBL] [Abstract][Full Text] [Related]
13. Cellulolytic bacteria from soils in harsh environments. Soares FL; Melo IS; Dias AC; Andreote FD World J Microbiol Biotechnol; 2012 May; 28(5):2195-203. PubMed ID: 22806042 [TBL] [Abstract][Full Text] [Related]
14. Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrass-adapted bacterial consortia. Gladden JM; Eichorst SA; Hazen TC; Simmons BA; Singer SW Biotechnol Bioeng; 2012 May; 109(5):1140-5. PubMed ID: 22125273 [TBL] [Abstract][Full Text] [Related]
15. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production. Hollister EB; Forrest AK; Wilkinson HH; Ebbole DJ; Malfatti SA; Tringe SG; Holtzapple MT; Gentry TJ Appl Microbiol Biotechnol; 2010 Sep; 88(1):389-99. PubMed ID: 20676626 [TBL] [Abstract][Full Text] [Related]
16. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia. Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385 [TBL] [Abstract][Full Text] [Related]
17. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Rastogi G; Bhalla A; Adhikari A; Bischoff KM; Hughes SR; Christopher LP; Sani RK Bioresour Technol; 2010 Nov; 101(22):8798-806. PubMed ID: 20599378 [TBL] [Abstract][Full Text] [Related]
18. Characterization of enriched aerotolerant cellulose-degrading communities for biofuels production using differing selection pressures and inoculum sources. Wushke S; Levin DB; Cicek N; Sparling R Can J Microbiol; 2013 Oct; 59(10):679-83. PubMed ID: 24102221 [TBL] [Abstract][Full Text] [Related]
19. Two-year field analysis of reduced recalcitrance transgenic switchgrass. Baxter HL; Mazarei M; Labbe N; Kline LM; Cheng Q; Windham MT; Mann DG; Fu C; Ziebell A; Sykes RW; Rodriguez M; Davis MF; Mielenz JR; Dixon RA; Wang ZY; Stewart CN Plant Biotechnol J; 2014 Sep; 12(7):914-24. PubMed ID: 24751162 [TBL] [Abstract][Full Text] [Related]
20. Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Li T; Mazéas L; Sghir A; Leblon G; Bouchez T Environ Microbiol; 2009 Apr; 11(4):889-904. PubMed ID: 19128320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]