BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 24350447)

  • 1. Co-production of lactate and volatile fatty acids through repeated-batch fermentation of fruit and vegetable waste: Effect of cycle time and replacement ratio.
    Liu H; Zhen F; Wu D; Wang Z; Kong X; Li Y; Xing T; Sun Y
    Bioresour Technol; 2023 Nov; 387():129678. PubMed ID: 37579859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load.
    Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J
    J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced volatile fatty acid production from food waste via anaerobic fermentation: effect of irons with different sizes.
    Zhao Y; Wei R; He D; Niu D; Zhou T
    Environ Technol; 2024 Jan; 45(1):50-60. PubMed ID: 35792808
    [No Abstract]   [Full Text] [Related]  

  • 4. Deep insight into oriented propionate production from food waste: Microbiological interpretation and design practice.
    Wu M; Liu X; Tu W; Xia J; Zou Y; Gong X; Yu P; Huang WE; Wang H
    Water Res; 2023 Sep; 243():120399. PubMed ID: 37499537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective separation of nutrients and volatile fatty acids from food wastes using electrodialysis and membrane contactor for resource valorization.
    Kotoka F; Gutierrez L; Verliefde A; Cornelissen E
    J Environ Manage; 2024 Mar; 354():120290. PubMed ID: 38367499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of volatile fatty acids from organic wastes to produce high-value products by photosynthetic bacteria: A review.
    Liang J; Zhang P; Zhang R; Chang J; Chen L; Zhang G; Wang A
    Environ Res; 2024 Feb; 242():117796. PubMed ID: 38040178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery.
    Shylaja Prakash N; Maurer P; Horn H; Hille-Reichel A
    Bioresour Technol; 2024 Apr; 397():130467. PubMed ID: 38373504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot-scale assessment of five common weeds in the sustainable treatment of sewage utilizing SHEFROL
    Abbasi SA; Rahi R; Abbasi T; Patnaik P; Abbasi T
    Int J Phytoremediation; 2024 Apr; ():1-15. PubMed ID: 38644582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on Start-Up Membraneless Anaerobic Baffled Reactor Coupled with Microbial Fuel Cell for Dye Wastewater Treatment.
    Liu N; Yun Y; Hu L; Xin L; Han M; Zhang P
    ACS Omega; 2021 Sep; 6(36):23515-23527. PubMed ID: 34549148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation.
    De Groof V; Coma M; Arnot T; Leak DJ; Lanham AB
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30678297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial ecology-based engineering of Microbial Electrochemical Technologies.
    Koch C; Korth B; Harnisch F
    Microb Biotechnol; 2018 Jan; 11(1):22-38. PubMed ID: 28805354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical techniques for evaluating short-chain fatty acid utilization by bioanodes.
    Huang W; Kim Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2620-2626. PubMed ID: 27826830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical stimulation improves microbial salinity resistance and organofluorine removal in bioelectrochemical systems.
    Feng H; Zhang X; Guo K; Vaiopoulou E; Shen D; Long Y; Yin J; Wang M
    Appl Environ Microbiol; 2015 Jun; 81(11):3737-44. PubMed ID: 25819966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation and wastewater treatment of oil refinery in microbial fuel cells using Pseudomonas putida.
    Majumder D; Maity JP; Tseng MJ; Nimje VR; Chen HR; Chen CC; Chang YF; Yang TC; Chen CY
    Int J Mol Sci; 2014 Sep; 15(9):16772-86. PubMed ID: 25247576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The treatment of PPCP-containing sewage in an anoxic/aerobic reactor coupled with a novel design of solid plain graphite-plates microbial fuel cell.
    Chang YT; Yang CW; Chang YJ; Chang TC; Wei DJ
    Biomed Res Int; 2014; 2014():765652. PubMed ID: 25197659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells.
    Wu W; Yang F; Liu X; Bai L
    Microb Cell Fact; 2014 May; 13():69. PubMed ID: 24885728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.
    Pant D; Arslan D; Van Bogaert G; Gallego YA; De Wever H; Diels L; Vanbroekhoven K
    Environ Technol; 2013; 34(13-16):1935-45. PubMed ID: 24350447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.
    Ki D; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioresour Technol; 2015 Nov; 195():83-8. PubMed ID: 26159378
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.