These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24350473)

  • 1. Optimal design of ethanol supply chains considering carbon trading effects and multiple technologies for side-product exploitation.
    Ortiz-Gutiérrez RA; Giarola S; Bezzo F
    Environ Technol; 2013; 34(13-16):2189-99. PubMed ID: 24350473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive approach to the design of ethanol supply chains including carbon trading effects.
    Giarola S; Shah N; Bezzo F
    Bioresour Technol; 2012 Mar; 107():175-85. PubMed ID: 22225607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term bioethanol system and its implications on GHG emissions: a case study of Thailand.
    Silalertruksa T; Gheewala SH
    Environ Sci Technol; 2011 Jun; 45(11):4920-8. PubMed ID: 21528843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.
    Gabrielle B; Gagnaire N; Massad RS; Dufossé K; Bessou C
    Bioresour Technol; 2014; 152():511-8. PubMed ID: 24280674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing energy efficiencies and greenhouse gas emissions under bioethanol-oriented paddy rice production in northern Japan.
    Koga N; Tajima R
    J Environ Manage; 2011 Mar; 92(3):967-73. PubMed ID: 21126818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofuels carbon footprints: Whole-systems optimisation for GHG emissions reduction.
    Zamboni A; Murphy RJ; Woods J; Bezzo F; Shah N
    Bioresour Technol; 2011 Aug; 102(16):7457-65. PubMed ID: 21641206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of the first and second generation bioethanol processes and the importance of by-products.
    Lennartsson PR; Erlandsson P; Taherzadeh MJ
    Bioresour Technol; 2014 Aug; 165():3-8. PubMed ID: 24582951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of process alternatives for lignocellulosic bioethanol production using a MILP approach.
    Scott F; Venturini F; Aroca G; Conejeros R
    Bioresour Technol; 2013 Nov; 148():525-34. PubMed ID: 24080291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives.
    Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD
    Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.
    Bright RM; Strømman AH
    Environ Sci Technol; 2010 Apr; 44(7):2261-9. PubMed ID: 20163088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.
    Wood BM; Jader LR; Schendel FJ; Hahn NJ; Valentas KJ; McNamara PJ; Novak PM; Heilmann SM
    Biotechnol Bioeng; 2013 Oct; 110(10):2624-32. PubMed ID: 23568780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic global sensitivity analysis in bioreactor networks for bioethanol production.
    Ochoa MP; Estrada V; Di Maggio J; Hoch PM
    Bioresour Technol; 2016 Jan; 200():666-79. PubMed ID: 26556401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw.
    Joelsson E; Erdei B; Galbe M; Wallberg O
    Biotechnol Biofuels; 2016; 9():1. PubMed ID: 26734071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated strategic and tactical biomass-biofuel supply chain optimization.
    Lin T; Rodríguez LF; Shastri YN; Hansen AC; Ting KC
    Bioresour Technol; 2014 Mar; 156():256-66. PubMed ID: 24508904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1.
    Su CM; Hsueh HT; Li TY; Huang LC; Chu YL; Tseng CM; Chu H
    Bioresour Technol; 2013 Oct; 145():162-5. PubMed ID: 23545071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of corn-based ethanol production in Argentina.
    Pieragostini C; Aguirre P; Mussati MC
    Sci Total Environ; 2014 Feb; 472():212-25. PubMed ID: 24295743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developments and perspectives of photobioreactors for biofuel production.
    Morweiser M; Kruse O; Hankamer B; Posten C
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1291-301. PubMed ID: 20535467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.