BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 24350712)

  • 1. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.
    Chowdhury G; Shibata N; Yamazaki H; Guengerich FP
    Chem Res Toxicol; 2014 Jan; 27(1):147-56. PubMed ID: 24350712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human liver microsomal cytochrome P450 3A enzymes involved in thalidomide 5-hydroxylation and formation of a glutathione conjugate.
    Chowdhury G; Murayama N; Okada Y; Uno Y; Shimizu M; Shibata N; Guengerich FP; Yamazaki H
    Chem Res Toxicol; 2010 Jun; 23(6):1018-24. PubMed ID: 20443640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diclofenac and its derivatives as tools for studying human cytochromes P450 active sites: particular efficiency and regioselectivity of P450 2Cs.
    Mancy A; Antignac M; Minoletti C; Dijols S; Mouries V; Duong NT; Battioni P; Dansette PM; Mansuy D
    Biochemistry; 1999 Oct; 38(43):14264-70. PubMed ID: 10572000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species Specificity and Selection of Models for Drug Oxidations Mediated by Polymorphic Human Enzymes.
    Yamazaki H; Shimizu M
    Drug Metab Dispos; 2023 Jan; 51(1):123-129. PubMed ID: 35772770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of human cytochrome P450 3A enzymes in cultured placental cells by thalidomide and relevance to bioactivation and toxicity.
    Murayama N; Kazuki Y; Satoh D; Arata K; Harada T; Shibata N; Guengerich FP; Yamazaki H
    J Toxicol Sci; 2017; 42(3):343-348. PubMed ID: 28496040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage.
    Wani TH; Chakrabarty A; Shibata N; Yamazaki H; Guengerich FP; Chowdhury G
    Chem Res Toxicol; 2017 Aug; 30(8):1622-1628. PubMed ID: 28745489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites.
    Marill J; Cresteil T; Lanotte M; Chabot GG
    Mol Pharmacol; 2000 Dec; 58(6):1341-8. PubMed ID: 11093772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice.
    Shimizu M; Suemizu H; Mitsui M; Shibata N; Guengerich FP; Yamazaki H
    Xenobiotica; 2017 Oct; 47(10):844-848. PubMed ID: 27852146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxymethylvinyl ketone: a reactive Michael acceptor formed by the oxidation of 3-butene-1,2-diol by cDNA-expressed human cytochrome P450s and mouse, rat, and human liver microsomes.
    Krause RJ; Kemper RA; Elfarra AA
    Chem Res Toxicol; 2001 Dec; 14(12):1590-5. PubMed ID: 11743741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo formation of dihydroxylated and glutathione conjugate metabolites derived from thalidomide and 5-Hydroxythalidomide in humanized TK-NOG mice.
    Yamazaki H; Suemizu H; Shimizu M; Igaya S; Shibata N; Nakamura M; Chowdhury G; Guengerich FP
    Chem Res Toxicol; 2012 Feb; 25(2):274-6. PubMed ID: 22268628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of human hepatic cytochrome P450s 2C9 and 3A4 in the metabolic activation of diclofenac.
    Tang W; Stearns RA; Wang RW; Chiu SH; Baillie TA
    Chem Res Toxicol; 1999 Feb; 12(2):192-9. PubMed ID: 10027798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of human cytochrome P450 to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol metabolism, as predicted from heterologous expression in yeast.
    Gautier JC; Lecoeur S; Cosme J; Perret A; Urban P; Beaune P; Pompon D
    Pharmacogenetics; 1996 Dec; 6(6):489-99. PubMed ID: 9014198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Protein Binding of 5-Hydroxythalidomide Bioactivated in Humanized Mice with Human P450 3A-Chromosome or Hepatocytes by Two-Dimensional Electrophoresis/Accelerator Mass Spectrometry.
    Yamazaki H; Suemizu H; Kazuki Y; Oofusa K; Kuribayashi S; Shimizu M; Ninomiya S; Horie T; Shibata N; Guengerich FP
    Chem Res Toxicol; 2016 Aug; 29(8):1279-81. PubMed ID: 27464947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the substrate specificities of human liver cytochrome P450s 2C9 and 2C18: application to the design of a specific substrate of CYP 2C18.
    Minoletti C; Dijols S; Dansette PM; Mansuy D
    Biochemistry; 1999 Jun; 38(24):7828-36. PubMed ID: 10387023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation.
    Chen Q; Ngui JS; Doss GA; Wang RW; Cai X; DiNinno FP; Blizzard TA; Hammond ML; Stearns RA; Evans DC; Baillie TA; Tang W
    Chem Res Toxicol; 2002 Jul; 15(7):907-14. PubMed ID: 12119000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4.
    Komatsu T; Yamazaki H; Asahi S; Gillam EM; Guengerich FP; Nakajima M; Yokoi T
    Drug Metab Dispos; 2000 Nov; 28(11):1361-8. PubMed ID: 11038165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. P450 2C18 catalyzes the metabolic bioactivation of phenytoin.
    Kinobe RT; Parkinson OT; Mitchell DJ; Gillam EM
    Chem Res Toxicol; 2005 Dec; 18(12):1868-75. PubMed ID: 16359177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thalidomide metabolism by the CYP2C subfamily.
    Ando Y; Fuse E; Figg WD
    Clin Cancer Res; 2002 Jun; 8(6):1964-73. PubMed ID: 12060642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics.
    Patten CJ; Thomas PE; Guy RL; Lee M; Gonzalez FJ; Guengerich FP; Yang CS
    Chem Res Toxicol; 1993; 6(4):511-8. PubMed ID: 8374050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone.
    Kakimoto K; Murayama N; Takenaka S; Nagayoshi H; Lim YR; Kim V; Kim D; Yamazaki H; Komori M; Guengerich FP; Shimada T
    Xenobiotica; 2019 Feb; 49(2):131-142. PubMed ID: 29310511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.