BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24350916)

  • 1. Dynamics in the heme geometry of myoglobin induced by the one-electron reduction.
    Choi J; Tojo S; Fujitsuka M; Majima T
    Int J Radiat Biol; 2014 Jun; 90(6):459-67. PubMed ID: 24350916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant.
    Lloyd E; Burk DL; Ferrer JC; Maurus R; Doran J; Carey PR; Brayer GD; Mauk AG
    Biochemistry; 1996 Sep; 35(36):11901-12. PubMed ID: 8794773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic and electrochemical studies of horse myoglobin in dimethyl sulfoxide.
    Li QC; Mabrouk PA
    J Biol Inorg Chem; 2003 Jan; 8(1-2):83-94. PubMed ID: 12459902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies of myoglobin at low pH: heme structure and ligation.
    Sage JT; Morikis D; Champion PM
    Biochemistry; 1991 Feb; 30(5):1227-37. PubMed ID: 1991102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-induced transformations of myoglobin. Characterization of a new equilibrium heme-pocket intermediate.
    Palaniappan V; Bocian DF
    Biochemistry; 1994 Nov; 33(47):14264-74. PubMed ID: 7947837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structural comparisons of heme protein crystals and solutions using resonance Raman spectroscopy.
    Zhu L; Sage JT; Champion PM
    Biochemistry; 1993 Oct; 32(41):11181-5. PubMed ID: 8218181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of CO-, deoxy- and met-myoglobins at various pH values.
    Yang F; Phillips GN
    J Mol Biol; 1996 Mar; 256(4):762-74. PubMed ID: 8642596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron.
    Yi J; Heinecke J; Tan H; Ford PC; Richter-Addo GB
    J Am Chem Soc; 2009 Dec; 131(50):18119-28. PubMed ID: 19924902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin.
    Hirota S; Mizoguchi Y; Yamauchi O; Kitagawa T
    J Biol Inorg Chem; 2002 Jan; 7(1-2):217-21. PubMed ID: 11862557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and photothermal study of myoglobin conformational changes in the presence of sodium dodecyl sulfate.
    Miksovská J; Yom J; Diamond B; Larsen RW
    Biomacromolecules; 2006 Feb; 7(2):476-82. PubMed ID: 16471919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced resonance Raman spectroscopic characterization of the protein native structure.
    Feng M; Tachikawa H
    J Am Chem Soc; 2008 Jun; 130(23):7443-8. PubMed ID: 18489096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme reduction by intramolecular electron transfer in cysteine mutant myoglobin under carbon monoxide atmosphere.
    Hirota S; Azuma K; Fukuba M; Kuroiwa S; Funasaki N
    Biochemistry; 2005 Aug; 44(30):10322-7. PubMed ID: 16042409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heme orientation affects holo-myoglobin folding and unfolding kinetics.
    Moczygemba C; Guidry J; Wittung-Stafshede P
    FEBS Lett; 2000 Mar; 470(2):203-6. PubMed ID: 10734234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the electronic and geometric structure of ferric and ferrous myoglobins in physiological solutions by Fe K-edge absorption spectroscopy.
    Lima FA; Penfold TJ; van der Veen RM; Reinhard M; Abela R; Tavernelli I; Rothlisberger U; Benfatto M; Milne CJ; Chergui M
    Phys Chem Chem Phys; 2014 Jan; 16(4):1617-31. PubMed ID: 24317683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of heme propionate groups to the conformational dynamics associated with CO photodissociation from horse heart myoglobin.
    Belogortseva N; Rubio M; Terrell W; Miksovská J
    J Inorg Biochem; 2007 Jul; 101(7):977-86. PubMed ID: 17499362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric band profile of the Soret band of deoxymyoglobin is caused by electronic and vibronic perturbations of the heme group rather than by a doming deformation.
    Schweitzer-Stenner R; Gorden JP; Hagarman A
    J Chem Phys; 2007 Oct; 127(13):135103. PubMed ID: 17919056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the heme iron-proximal histidine bond requires unfolding of deoxymyoglobin.
    Tang Q; Kalsbeck WA; Olson JS; Bocian DF
    Biochemistry; 1998 May; 37(19):7047-56. PubMed ID: 9578593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of the heme propionate groups to the electron transfer and electrostatic properties of myoglobin.
    Lim AR; Sishta BP; Mauk AG
    J Inorg Biochem; 2006 Dec; 100(12):2017-23. PubMed ID: 17070916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and ligand binding properties of myoglobins reconstituted with monodepropionated heme: functional role of each heme propionate side chain.
    Harada K; Makino M; Sugimoto H; Hirota S; Matsuo T; Shiro Y; Hisaeda Y; Hayashi T
    Biochemistry; 2007 Aug; 46(33):9406-16. PubMed ID: 17636874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.