These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 24351009)

  • 1. Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue.
    Mertens JP; Sugg KB; Lee JD; Larkin LM
    Regen Med; 2014 Jan; 9(1):89-100. PubMed ID: 24351009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches.
    Langridge B; Griffin M; Butler PE
    J Mater Sci Mater Med; 2021 Jan; 32(1):15. PubMed ID: 33475855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascularized and Innervated Skeletal Muscle Tissue Engineering.
    Gilbert-Honick J; Grayson W
    Adv Healthc Mater; 2020 Jan; 9(1):e1900626. PubMed ID: 31622051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury.
    Corona BT; Ward CL; Baker HB; Walters TJ; Christ GJ
    Tissue Eng Part A; 2014 Feb; 20(3-4):705-15. PubMed ID: 24066899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
    Mintz EL; Passipieri JA; Franklin IR; Toscano VM; Afferton EC; Sharma PR; Christ GJ
    Tissue Eng Part A; 2020 Feb; 26(3-4):140-156. PubMed ID: 31578935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent trends in 3D bioprinting technology for skeletal muscle regeneration.
    Sabetkish S; Currie P; Meagher L
    Acta Biomater; 2024 Jun; 181():46-66. PubMed ID: 38697381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury.
    Kesireddy V
    Int J Nanomedicine; 2016; 11():1461-73. PubMed ID: 27114706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.
    Wolf MT; Dearth CL; Sonnenberg SB; Loboa EG; Badylak SF
    Adv Drug Deliv Rev; 2015 Apr; 84():208-21. PubMed ID: 25174309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
    Grasman JM; Zayas MJ; Page RL; Pins GD
    Acta Biomater; 2015 Oct; 25():2-15. PubMed ID: 26219862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue Engineered 3D Constructs for Volumetric Muscle Loss.
    Gahlawat S; Oruc D; Paul N; Ragheb M; Patel S; Fasasi O; Sharma P; Shreiber DI; Freeman JW
    Ann Biomed Eng; 2024 Sep; 52(9):2325-2347. PubMed ID: 39085677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss.
    Kiran S; Dwivedi P; Kumar V; Price RL; Singh UP
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
    Carnes ME; Pins GD
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32751847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss.
    Eugenis I; Wu D; Rando TA
    Biomaterials; 2021 Nov; 278():121173. PubMed ID: 34619561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement.
    Sicari BM; Agrawal V; Siu BF; Medberry CJ; Dearth CL; Turner NJ; Badylak SF
    Tissue Eng Part A; 2012 Oct; 18(19-20):1941-8. PubMed ID: 22906411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury.
    Corona BT; Machingal MA; Criswell T; Vadhavkar M; Dannahower AC; Bergman C; Zhao W; Christ GJ
    Tissue Eng Part A; 2012 Jun; 18(11-12):1213-28. PubMed ID: 22439962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed.
    Bour RK; Sharma PR; Turner JS; Hess WE; Mintz EL; Latvis CR; Shepherd BR; Presnell SC; McConnell MJ; Highley C; Peirce SM; Christ GJ
    Connect Tissue Res; 2020 Mar; 61(2):216-228. PubMed ID: 31899969
    [No Abstract]   [Full Text] [Related]  

  • 17. Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery.
    Novakova SS; Rodriguez BL; Vega-Soto EE; Nutter GP; Armstrong RE; Macpherson PCD; Larkin LM
    Tissue Eng Part A; 2020 Aug; 26(15-16):837-851. PubMed ID: 32013753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-innervated tissue-engineered muscle promotes a pro-regenerative microenvironment following volumetric muscle loss.
    Das S; Browne KD; Laimo FA; Maggiore JC; Hilman MC; Kaisaier H; Aguilar CA; Ali ZS; Mourkioti F; Cullen DK
    Commun Biol; 2020 Jun; 3(1):330. PubMed ID: 32587337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies.
    Passipieri JA; Christ GJ
    Cells Tissues Organs; 2016; 202(3-4):202-213. PubMed ID: 27825153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tissue engineering approach for repairing craniofacial volumetric muscle loss in a sheep following a 2, 4, and 6-month recovery.
    Rodriguez BL; Vega-Soto EE; Kennedy CS; Nguyen MH; Cederna PS; Larkin LM
    PLoS One; 2020; 15(9):e0239152. PubMed ID: 32956427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.