These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24351093)

  • 21. Improving open circuit potential in hybrid P3HT:CdSe bulk heterojunction solar cells via colloidal tert-butylthiol ligand exchange.
    Greaney MJ; Das S; Webber DH; Bradforth SE; Brutchey RL
    ACS Nano; 2012 May; 6(5):4222-30. PubMed ID: 22537193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.
    Jin X; Sun W; Chen Z; Wei T; Chen C; He X; Yuan Y; Li Y; Li Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8771-81. PubMed ID: 24835845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid density functional study on the electronic structures and properties of P3HT-PbS and P3HT-CdS hybrid interface for photovoltaic applications.
    Nguyen TP; Shim JH
    J Comput Chem; 2018 Sep; 39(24):1990-1999. PubMed ID: 30315588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly.
    Choi H; Santra PK; Kamat PV
    ACS Nano; 2012 Jun; 6(6):5718-26. PubMed ID: 22658983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the improved stability of hybrid polymer solar cells fabricated with copper electrodes.
    Reeja-Jayan B; Manthiram A
    ACS Appl Mater Interfaces; 2011 May; 3(5):1492-501. PubMed ID: 21449611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular structure effect of pyridine-based surface ligand on the performance of P3HT:TiO₂ hybrid solar cell.
    Lin JF; Tu GY; Ho CC; Chang CY; Yen WC; Hsu SH; Chen YF; Su WF
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1009-16. PubMed ID: 23323972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlating interface heterostructure, charge recombination, and device efficiency of poly(3-hexyl thiophene)/TiO2 nanorod solar cell.
    Zeng TW; Ho CC; Tu YC; Tu GY; Wang LY; Su WF
    Langmuir; 2011 Dec; 27(24):15255-60. PubMed ID: 22050188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells.
    Peng Y; Song G; Hu X; He G; Chen Z; Xu X; Hu J
    Nanoscale Res Lett; 2013 Feb; 8(1):106. PubMed ID: 23442609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid solar cells based on P3HT and Si@MWCNT nanocomposite.
    Chen L; Pan X; Zheng D; Gao Y; Jiang X; Xu M; Chen H
    Nanotechnology; 2010 Aug; 21(34):345201. PubMed ID: 20671361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.
    Liao WP; Wu JJ
    J Phys Chem Lett; 2013 Jun; 4(11):1983-8. PubMed ID: 26283138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Charge collection and pore filling in solid-state dye-sensitized solar cells.
    Snaith HJ; Humphry-Baker R; Chen P; Cesar I; Zakeeruddin SM; Grätzel M
    Nanotechnology; 2008 Oct; 19(42):424003. PubMed ID: 21832663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.
    Ruankham P; Yoshikawa S; Sagawa T
    Phys Chem Chem Phys; 2013 Jun; 15(24):9516-22. PubMed ID: 23446342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.
    Ongul F; Yuksel SA; Allahverdi C; Bozar S; Kazici M; Gunes S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Apr; 194():50-56. PubMed ID: 29331821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rethinking band bending at the P3HT-TiO(2) interface.
    Haring AJ; Ahrenholtz SR; Morris AJ
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4394-401. PubMed ID: 24571734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative Charge Transport Study of MEHPPV-TiO₂ and P3HT-TiO₂ Nanocomposites for Hybrid Bulk Heterojunction Solar Cells.
    Kumar S; Sharma SN; Kumar J
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3408-3419. PubMed ID: 30744768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of bifunctional linker on the performance of P3HT/CdSe quantum dot-linker-ZnO nanocolumn photovoltaic device.
    Zeng TW; Liu S; Hsu FC; Huang KT; Liao HC; Su WF
    Opt Express; 2010 Sep; 18 Suppl 3():A357-65. PubMed ID: 21165066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the effect of surface chemistry on charge generation and transport in poly (3-hexylthiophene)/CdSe hybrid solar cells.
    Lek JY; Xi L; Kardynal BE; Wong LH; Lam YM
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):287-92. PubMed ID: 21261268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interfacial charge transfer dynamics in CdSe/dipole molecules coated quantum dot polymer blends.
    Albero J; Martínez-Ferrero E; Iacopino D; Vidal-Ferran A; Palomares E
    Phys Chem Chem Phys; 2010 Oct; 12(40):13047-51. PubMed ID: 20820584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Roles of Interfacial Modifiers in Inorganic Titania/Organic Poly(3-hexylthiophene) Heterojunction Hybrid Solar Cells.
    Pirashanthan A; Kajana T; Velauthapillai D; Shivatharsiny Y; Bentouba S; Ravirajan P
    Nanomaterials (Basel); 2022 Feb; 12(5):. PubMed ID: 35269308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ternary blend hybrid solar cells incorporating wide and narrow bandgap polymers.
    Kim HD; Ohkita H; Benten H; Ito S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17551-5. PubMed ID: 25244405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.