These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2435161)

  • 41. Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cell.
    Ohya Y; Terada K; Kitamura K; Kuriyama H
    Am J Physiol; 1986 Sep; 251(3 Pt 1):C335-46. PubMed ID: 2428252
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tetraethylammonium blockade of calcium-activated potassium channels in clonal anterior pituitary cells.
    Wong BS; Adler M
    Pflugers Arch; 1986 Sep; 407(3):279-84. PubMed ID: 2429252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons.
    Franciolini F; Hogg R; Catacuzzeno L; Petris A; Trequattrini C; Adams DJ
    Pflugers Arch; 2001 Feb; 441(5):629-38. PubMed ID: 11294244
    [TBL] [Abstract][Full Text] [Related]  

  • 44. K+ channels and the intracellular calcium signal in human melanoma cell proliferation.
    Lepple-Wienhues A; Berweck S; Böhmig M; Leo CP; Meyling B; Garbe C; Wiederholt M
    J Membr Biol; 1996 May; 151(2):149-57. PubMed ID: 8661503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of the Ba2+-sensitive NH4+ transport pathways in the apical cell membrane of primary cultured rabbit MTAL cells.
    Jans F; Balut C; Ameloot M; Wouters P; Steels P
    Nephron Physiol; 2007; 106(3):p45-53. PubMed ID: 17570948
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle.
    Castle NA; Haylett DG
    J Physiol; 1987 Feb; 383():31-43. PubMed ID: 2443648
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional and molecular evidence for Shaker-like K+ channels in rabbit renal papillary epithelial cell line.
    Volk KA; Husted RF; Pruchno CJ; Stokes JB
    Am J Physiol; 1994 Oct; 267(4 Pt 2):F671-8. PubMed ID: 7524363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blockade of potassium or calcium channels provokes modifications in TRH-induced TSH release from rat perifused pituitaries.
    Roussel JP; Mateu G; Astier H
    Endocr Regul; 1992 Dec; 26(4):163-70. PubMed ID: 1284919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule.
    Wang WH; Schwab A; Giebisch G
    Am J Physiol; 1990 Sep; 259(3 Pt 2):F494-502. PubMed ID: 2396675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of maxi-K-channels in bovine trabecular meshwork and their activation by cyclic guanosine monophosphate.
    Stumpff F; Strauss O; Boxberger M; Wiederholt M
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1883-92. PubMed ID: 9286279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ionic channels in epithelial cell membranes.
    Van Driessche W; Zeiske W
    Physiol Rev; 1985 Oct; 65(4):833-903. PubMed ID: 2414790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-channel K+ currents in Drosophila muscle and their pharmacological block.
    Gorczyca MG; Wu CF
    J Membr Biol; 1991 May; 121(3):237-48. PubMed ID: 1865488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules.
    Hunter M; Lopes AG; Boulpaep EL; Giebisch GH
    Proc Natl Acad Sci U S A; 1984 Jul; 81(13):4237-9. PubMed ID: 6330754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein.
    Inoue R; Kitamura K; Kuriyama H
    Pflugers Arch; 1985 Oct; 405(3):173-9. PubMed ID: 2415914
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quinine blockade of currents through Ca2+-activated K+ channels in bovine chromaffin cells.
    Glavinović MI; Trifaró JM
    J Physiol; 1988 May; 399():139-52. PubMed ID: 2457086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Charybdotoxin and noxiustoxin, two homologous peptide inhibitors of the K+ (Ca2+) channel.
    Valdivia HH; Smith JS; Martin BM; Coronado R; Possani LD
    FEBS Lett; 1988 Jan; 226(2):280-4. PubMed ID: 2448164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potassium-selective ion channels in a transformed insulin-secreting cell line.
    Light DB; Van Eenenaam DP; Sorenson RL; Levitt DG
    J Membr Biol; 1987; 95(1):63-72. PubMed ID: 2435914
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Apical membrane ionic channels in the rabbit cortical thick ascending limb in primary culture.
    Merot J; Poncet V; Bidet M; Tauc M; Poujeol P
    Biochim Biophys Acta; 1991 Dec; 1070(2):387-400. PubMed ID: 1684913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells.
    Yellen G
    J Gen Physiol; 1984 Aug; 84(2):157-86. PubMed ID: 6092514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.