BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 24351716)

  • 21. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification.
    Palermo G; Schouten WM; Alonso LL; Ulens C; Kool J; Slagboom J
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming.
    Gutiérrez JM; Albulescu LO; Clare RH; Casewell NR; Abd El-Aziz TM; Escalante T; Rucavado A
    Toxins (Basel); 2021 Jun; 13(7):. PubMed ID: 34209691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways.
    Bickler PE
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31979014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential myotoxic and cytotoxic activities of pre-synaptic neurotoxins from Papuan taipan (Oxyuranus scutellatus) and Irian Jayan death adder (Acanthophis rugosus) venoms.
    Chaisakul J; Parkington HC; Isbister GK; Konstantakopoulos N; Hodgson WC
    Basic Clin Pharmacol Toxicol; 2013 May; 112(5):325-34. PubMed ID: 23311944
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation.
    Offor BC; Muller B; Piater LA
    Toxins (Basel); 2022 Oct; 14(11):. PubMed ID: 36355973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy.
    Laustsen AH; Engmark M; Milbo C; Johannesen J; Lomonte B; Gutiérrez JM; Lohse B
    Curr Pharm Des; 2016; 22(34):5270-5293. PubMed ID: 27339430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine.
    Nirthanan S
    Biochem Pharmacol; 2020 Nov; 181():114168. PubMed ID: 32710970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic strategies of predominant toxins in snake venoms.
    Xiong S; Huang C
    Toxicol Lett; 2018 May; 287():142-154. PubMed ID: 29428543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lys49 myotoxins, secreted phospholipase A
    Lomonte B
    Toxicon; 2023 Mar; 224():107024. PubMed ID: 36632869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neurotoxic effects of venoms from seven species of Australasian black snakes (Pseudechis): efficacy of black and tiger snake antivenoms.
    Ramasamy S; Fry BG; Hodgson WC
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):7-12. PubMed ID: 15730427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anti-Neurotoxins from
    Cardona-Ruda A; Rey-Suárez P; Núñez V
    Toxins (Basel); 2022 Apr; 14(4):. PubMed ID: 35448874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of five phospholipases A2 from the venom of king brown snake, Pseudechis australis, on nerve and muscle.
    Fatehi M; Rowan EG; Harvey AL; Harris JB
    Toxicon; 1994 Dec; 32(12):1559-72. PubMed ID: 7725325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Widespread Evolution of Molecular Resistance to Snake Venom α-Neurotoxins in Vertebrates.
    Khan MA; Dashevsky D; Kerkkamp H; Kordiš D; de Bakker MAG; Wouters R; van Thiel J; Op den Brouw B; Vonk F; Kini RM; Nazir J; Fry BG; Richardson MK
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33023159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-function relationships of phospholipases. II: Charge density distribution and the myotoxicity of presynaptically neurotoxic phospholipases.
    Kini RM; Iwanaga S
    Toxicon; 1986; 24(9):895-905. PubMed ID: 3544338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathology-specific experimental antivenoms for haemotoxic snakebite: The impact of immunogen diversity on the in vitro cross-reactivity and in vivo neutralisation of geographically diverse snake venoms.
    Alomran N; Alsolaiss J; Albulescu LO; Crittenden E; Harrison RA; Ainsworth S; Casewell NR
    PLoS Negl Trop Dis; 2021 Aug; 15(8):e0009659. PubMed ID: 34407084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of a human monoclonal antibody that cross-neutralizes venom phospholipase A
    Sørensen CV; Almeida JR; Bohn MF; Rivera-de-Torre E; Schoffelen S; Voldborg BG; Ljungars A; Vaiyapuri S; Laustsen AH
    Toxicon; 2023 Oct; 234():107307. PubMed ID: 37783315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro.
    Lomonte B; Angulo Y; Rufini S; Cho W; Giglio JR; Ohno M; Daniele JJ; Geoghegan P; Gutiérrez JM
    Toxicon; 1999 Jan; 37(1):145-58. PubMed ID: 9920486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bites and stings from venomous animals: a global overview.
    White J
    Ther Drug Monit; 2000 Feb; 22(1):65-8. PubMed ID: 10688262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of snake venoms and their neurotoxins on the nervous system of man and animals.
    Campbell CH
    Contemp Neurol Ser; 1975; 12():259-93. PubMed ID: 124647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The efficacy of two antivenoms against the in vitro myotoxic effects of black snake (Pseudechis) venoms in the chick biventer cervicis nerve-muscle preparation.
    Ramasamy S; Isbister GK; Hodgson WC
    Toxicon; 2004 Dec; 44(8):837-45. PubMed ID: 15530965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.