These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24352083)

  • 1. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features.
    Murie C; Barette C; Lafanechère L; Nadon R
    J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GUItars: a GUI tool for analysis of high-throughput RNA interference screening data.
    Goktug AN; Ong SS; Chen T
    PLoS One; 2012; 7(11):e49386. PubMed ID: 23185323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of normalization methods on high-throughput screening data with high hit rates and drug testing with dose-response data.
    Mpindi JP; Swapnil P; Dmitrii B; Jani S; Saeed K; Wennerberg K; Aittokallio T; Östling P; Kallioniemi O
    Bioinformatics; 2015 Dec; 31(23):3815-21. PubMed ID: 26254433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Illustration of SSMD, z score, SSMD*, z* score, and t statistic for hit selection in RNAi high-throughput screens.
    Zhang XD
    J Biomol Screen; 2011 Aug; 16(7):775-85. PubMed ID: 21515799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single assay-wide variance experimental (SAVE) design for high-throughput screening.
    Murie C; Barette C; Lafanechère L; Nadon R
    Bioinformatics; 2013 Dec; 29(23):3067-72. PubMed ID: 24058057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells.
    Harder N; Batra R; Diessl N; Gogolin S; Eils R; Westermann F; König R; Rohr K
    Cytometry A; 2015 Jun; 87(6):524-40. PubMed ID: 25630981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving detection of rare biological events in high-throughput screens.
    Murie C; Barette C; Button J; Lafanechère L; Nadon R
    J Biomol Screen; 2015 Feb; 20(2):230-41. PubMed ID: 25190066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.
    Iles LR; Bartholomeusz GA
    Methods Mol Biol; 2016; 1470():121-35. PubMed ID: 27581289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Analysis for High-Throughput RNAi Screening.
    Azorsa DO; Turnidge MA; Arora S
    Methods Mol Biol; 2016; 1470():247-60. PubMed ID: 27581298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image-based chemical screening.
    Carpenter AE
    Nat Chem Biol; 2007 Aug; 3(8):461-5. PubMed ID: 17637778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-of-Function RNAi Screen to Identify Necrosis-Signaling Molecules.
    Moquin DM; Chan FK
    Methods Mol Biol; 2018; 1857():11-18. PubMed ID: 30136226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Learning Strategies for Phenotypic Profiling of High-Content Screens.
    Smith K; Horvath P
    J Biomol Screen; 2014 Jun; 19(5):685-95. PubMed ID: 24643256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing an Infrastructure for High-Throughput Short-Interfering RNA Screening.
    Yin H; Sereduk C; Tang N
    Methods Mol Biol; 2016; 1470():1-13. PubMed ID: 27581280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multivariate Computational Method to Analyze High-Content RNAi Screening Data.
    Rameseder J; Krismer K; Dayma Y; Ehrenberger T; Hwang MK; Airoldi EM; Floyd SR; Yaffe MB
    J Biomol Screen; 2015 Sep; 20(8):985-97. PubMed ID: 25918037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rank ordering plate data facilitates data visualization and normalization in high-throughput screening.
    Mangat CS; Bharat A; Gehrke SS; Brown ED
    J Biomol Screen; 2014 Oct; 19(9):1314-20. PubMed ID: 24828052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence microscopy-based RNA interference screening.
    Gunkel M; Beil N; Beneke J; Reymann J; Erfle H
    Methods Mol Biol; 2015; 1251():59-66. PubMed ID: 25391794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput RNAi screening for the identification of novel targets.
    Henderson MC; Azorsa DO
    Methods Mol Biol; 2013; 986():89-95. PubMed ID: 23436407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of high-throughput screens with HiTSeekR.
    List M; Schmidt S; Christiansen H; Rehmsmeier M; Tan Q; Mollenhauer J; Baumbach J
    Nucleic Acids Res; 2016 Aug; 44(14):6639-48. PubMed ID: 27330136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Institutional Profile: The Sheffield RNAi screening facility: a service for high-throughput, genome-wide Drosophila RNAi screens.
    Brown S
    Future Med Chem; 2010 Dec; 2(12):1805-12. PubMed ID: 21428803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical methods for analysis of high-throughput RNA interference screens.
    Birmingham A; Selfors LM; Forster T; Wrobel D; Kennedy CJ; Shanks E; Santoyo-Lopez J; Dunican DJ; Long A; Kelleher D; Smith Q; Beijersbergen RL; Ghazal P; Shamu CE
    Nat Methods; 2009 Aug; 6(8):569-75. PubMed ID: 19644458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.