BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 24352224)

  • 1. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of nanopores with ultrashort single-walled carbon nanotubes inserted in a lipid bilayer.
    Liu L; Xie J; Li T; Wu HC
    Nat Protoc; 2015 Nov; 10(11):1670-8. PubMed ID: 26426500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.
    Venkatesan BM; Polans J; Comer J; Sridhar S; Wendell D; Aksimentiev A; Bashir R
    Biomed Microdevices; 2011 Aug; 13(4):671-82. PubMed ID: 21487665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.
    Garcia-Fandiño R; Piñeiro Á; Trick JL; Sansom MS
    ACS Nano; 2016 Mar; 10(3):3693-701. PubMed ID: 26943498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution discrimination of homologous and isomeric proteinogenic amino acids in nanopore sensors with ultrashort single-walled carbon nanotubes.
    Peng W; Yan S; Zhou K; Wu HC; Liu L; Zhao Y
    Nat Commun; 2023 May; 14(1):2662. PubMed ID: 37160961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in DNA motion control and sequence readout using nanopore devices.
    Carson S; Wanunu M
    Nanotechnology; 2015 Feb; 26(7):074004. PubMed ID: 25642629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supported lipid bilayer/carbon nanotube hybrids.
    Zhou X; Moran-Mirabal JM; Craighead HG; McEuen PL
    Nat Nanotechnol; 2007 Mar; 2(3):185-90. PubMed ID: 18654251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEI/Zr⁴⁺-coated nanopore for selective and sensitive detection of ATP in combination with single-walled carbon nanotubes.
    Zhang S; Bao A; Sun T; Wang E; Wang J
    Biosens Bioelectron; 2015 Jan; 63():287-293. PubMed ID: 25108109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insertion of short amino-functionalized single-walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion.
    Kraszewski S; Bianco A; Tarek M; Ramseyer C
    PLoS One; 2012; 7(7):e40703. PubMed ID: 22815794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crowding-Induced DNA Translocation through a Protein Nanopore.
    Yao F; Peng X; Su Z; Tian L; Guo Y; Kang XF
    Anal Chem; 2020 Mar; 92(5):3827-3833. PubMed ID: 32048508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretching and controlled motion of single-stranded DNA in locally heated solid-state nanopores.
    Belkin M; Maffeo C; Wells DB; Aksimentiev A
    ACS Nano; 2013 Aug; 7(8):6816-24. PubMed ID: 23876013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform.
    Kang X; Alibakhshi MA; Wanunu M
    Nano Lett; 2019 Dec; 19(12):9145-9153. PubMed ID: 31724865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of simultaneous, single ion transport through two single-walled carbon nanotubes: observation of a three-state system.
    Choi W; Lee CY; Ham MH; Shimizu S; Strano MS
    J Am Chem Soc; 2011 Jan; 133(2):203-5. PubMed ID: 21166470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of single ion channel activity with carbon nanotubes.
    Zhou W; Wang YY; Lim TS; Pham T; Jain D; Burke PJ
    Sci Rep; 2015 Mar; 5():9208. PubMed ID: 25778101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting the translocation of DNA through a nanopore using graphene nanoribbons.
    Traversi F; Raillon C; Benameur SM; Liu K; Khlybov S; Tosun M; Krasnozhon D; Kis A; Radenovic A
    Nat Nanotechnol; 2013 Dec; 8(12):939-45. PubMed ID: 24240429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA.
    Jou I; Muthukumar M
    Biophys J; 2017 Oct; 113(8):1664-1672. PubMed ID: 29045861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.